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1. INTRODUCTION

As discussed by Hsiao (2014), panel data provides several benefits for econo-
metric estimation such as increasing degrees of freedom, alleviating the problem
of data multicollinearity, and eliminating or reducing the estimation bias for a
more robust inference, etc. Over the past few decades, econometric analysis of
panel data models has grown into a major subfield of econometrics and gained
increasing attentions both empirically and theoretically.

One major issue that arises in almost every research of panel data models
with potential implications on parameter estimation and inference is the possi-
ble interdependence among different individual units. How to characterize or
capture cross-sectional dependence (CSD for short) has attracted considerable
interests among researchers over the years, see Sarafidis and Wansbeek (2012)
for an overview and reference therein. A prominent approach of dealing with
CSD is the factor structure approach,1 which assumes the error term contains a
finite number of unobserved factors that affect each individual with individual-
specific factor loadings (e.g., Bai (2009), Bai and Li (2012, 2014) and Pesaran
(2006)). For this approach, three main methods, namely, the principal compo-
nent (PC) method by Bai (2009), the maximum likelihood estimation (MLE) of
Bai and Li (2012, 2014) and the common correlated effects (CCE) approach of
Pesaran (2006), have been developed in large panels where both cross-sectional
and time series dimensions tend to infinity. The first two methods require to es-
timate the common factors and factor loadings, while the CCE approach focus
on the estimation of slope parameters by using the cross-sectional averages of
observables to approximate the unknown common factors. Furthermore, since
researchers especially microeconometricians generally deal with panels involv-
ing a large number of individual units (N) in a relative short time period (T ),2 it
is more challenging to deal with the presence of CSD in panel data models with
a short/fixed time period. For some recent works on balanced panel with CSD
, see Ahn, Lee, and Schmidt (2013), Juodis and Sarafidis (2014) and Hayakawa
(2012) for GMM approach, and Bai (2013) and Hayakawa (2014) for maximum
likelihood method.

Another important issue for panel data models is to take into account of
unbalancedness of the data structure. Unbalanced panels can arise for various

1There is also arising literature on spatial approach to deal with CSD, which is developed
primarily for cross-sectional data using a concept of a distance metric. For more details on spatial
econometrics, see Lee and Yu (2010) for overview and the reference therein.

2For instance, the data come from surveys where a large group of people or households has
been followed over a few years, e.g., the NLS and PSID dataset.
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reasons. For example, a variable is unobserved in certain time periods due to
some pre-specified rules, or individuals initially participating in the panel may
not be willing or able to participate it anymore. Regarding this, it could be
of crucial importance to take the feature of unbalancedness into account in the
estimation of panel models. For more works on unbalanced panels, see Baltagi
and Chang (1994), Wansbeek and Kapteyn (1989), and Baltagi and Song (2006).
Note that almost all the previous works on unbalanced panels in the literature
focus on models without CSD.

To our best knowledge, the only exception is Bai, Liao and Yang (2015) who
consider an unbalanced panel data model with interactive fixed effects when
both N and T are large. They propose an LS-EM-PCA algorithm to estimate
the parameters, which combines the EM algorithm with the least squares (LS)
method and principal component analysis (PCA). The LS-EM-PCA algorithm
consists of two loops. The inner loop carries out the EM, while the outer loop
estimates the slope parameters. Such iterative algorithm may be time-consuming
and instable due to the possible existence of local optimizers. In addition, they
only use simulation studies to show that the EM-type estimators are consistent
and converge rapidly when both individual and time dimensions are large, say
N,T ≥ 50. No asymptotic analysis is provided due to the technically difficulty in
proving consistency and further deriving the inferential theory of the proposed
estimators.

In this paper, we consider the estimation and inference of unbalanced panel
data models with CSD when N is large and T is small. To our best knowledge, it
is the first paper to study the CCE estimator for unbalanced panel data. Also our
paper contributes the literature on panel data model with cross-sectional depen-
dence when T is small. To be specific, we modify the CCE estimate of Pesaran
(2006) to our unbalanced panel and propose two methods to take cross-sectional
averages for unbalanced data. We focus more on taking the cross-sectional av-
erages of all available observations for each time period due to the efficiency
consideration. Following Pesaran (2006), we derive the CCE estimate for un-
balanced panel data models (CCE-UB for short). We show that the CCE-UB
is consistent and asymptotically normally distributed under some regular con-
ditions when N is large and T is small. A set of Monte Carlo simulations is
conducted to investigate the finite sample performance of the proposed estima-
tor in this paper. From the simulation results, we can observe that the CCE-UB
is indeed consistent and leads to valid statistical inference for unbalanced panels
with CSD. In all, we can conclude that the CCE-UB is suitable for estimation
and inference for unbalanced panel with CSD when N is large and T is small.
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The rest of the paper is organized as follows. In Section 2, we present the
models with CSD and list the main assumptions. In Section 3, we introduce
our CCE-UB estimator for the unbalanced panel and derive its asymptotics. In
Section 4, we present Monte Carlo evidence for the finite sample performance
of the proposed estimator. Conclusion is made at Section 5.

NOTATION. Throughout the paper, let C signifies a generic constant whose
exact value may vary from case to case. “IID” refers to “independently and iden-
tically distributed”. ‖A‖= [tr(A′A)]1/2 denotes the Frobenius norm of matrix A.

The operators
p→ and d→ denote the convergences in probability and distribution,

respectively.

2. MODEL AND ASSUMPTIONS

To begin with, let’s assume the unbalanced panel data models are given by

yit = αyi +x′itβ + eit , (1)

eit = λ
′
ift + vit , (2)

i = 1, . . . ,N, t = ti ∈Ti ≡ {ti (1) , . . . , ti (Ti)} , (3)

where Ti is the set included time indices of the observed observations for the
ith individual, αyi represents individual-specific effect, xit is a k× 1 vector of
observables which is strict exogenous, λ i and ft are r×1 unobservables, and vit

is the idiosyncratic error. Usually, ft refers to unobservable factors and λ i refers
to factor loadings, and r is unknown to researchers.

Throughout this paper, we assume the panels are unbalanced due to ran-
domly missing observations. For each individual i, there are Ti observations
available at times (ti (1) , . . . , ti (Ti)), and Ti can be different across i. Let T =
maxi=1,2,...,N {Ti} . For each t, let Nt = ∑

N
i=1 1(t ∈Ti) denote the number of ob-

servations observed at time period t. In this paper, we are interested in the esti-
mation and inference of β when N is large while T is fixed.

In addition, we also assume that xit is correlated with ft as

xit = αxi +Γift + ε it , (4)

where αx,i is a k×1 vector of individual-specific effects, Γi is a k× r matrix of
factor loadings, and ε it is a k×1 vector of idiosyncratic errors. The above setup
is similar to that of Bai and Li (2014) and Pesaran (2006).

For models (1)-(4), we make the following assumptions for asymptotic anal-
ysis in the next section.
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Assumption 1. vi = (vi1, ...,viT )
′ ∼IID(0,Ωv) across i, and maxt Ev4

it <C <
∞.

Assumption 2. ε i = (ε i1, ...,ε iT )
′ are IID across i and ε it has finite fourth

moment for each t.
Assumption 3. The individual-specific errors vi and ε j are distributed inde-

pendently for all i and j.
Assumption 4. The individual-specific effects αyi and αxi are IID across i

and independent of v jt ,ε jt and ft for all j and t.
Assumption 5. (λ i,Γi) are IID across i with finite 4th moment, and inde-

pendent of v jt , ε jt and ft for all j and t.
Assumption 6. The factors ft have finite fourth moment and are independent

of vis and ε is for all i,s and t.
Assumption 7. Ñ ≡mint=1,...,T {Nt}→ ∞ and N/Ñ2→ 0, as N→ ∞.

Remark 1. Assumptions 1-2 impose IID structure across i while allow for gen-
eral nonstationarity along time. Assumptions 3-6 impose some dependent struc-
ture on the data generating process, which ensure that the regressors xit are
strictly exogenous and allows for the correlation between unobserved factors
and xit . It is possible to relax Assumptions 1-2 to allow for weak CSD in {vit}
or {ε it} as Bai (2009) with more complicated arguments. The existence of 4th
moment is usually imposed to apply the LLN and CLT for independent but not
identically distributed (inid) sequence. Assumption 7 requires that the minimum
number of observed observations along t, Ñ should tend to infinity at a rate not
slower than N1/2, which is used in the establishing the limiting distribution of
CCE-UB estimator. The consistency of CCE-UB estimator only requires Ñ→∞.

3. CCE ESTIMATOR FOR UNBALANCE PANEL WITH CSD

In this paper, we take the CCE approach of Pesaran (2006), which uses ob-
served variables as the proxies for unknown factors, and is less affected by the
problem of missing data once N is large. Another reason for choosing CCE is
the fact, which is pointed out in a recent study by Westerlund and Urbain (2015),
that the CCE estimators of slope coefficients generally perform the best in the
case of homogeneous slopes and known number of unobserved common factors
although the PC estimates of factors are more efficient than the cross-sectional
averages. Also, we need to mention that the LS-EM-PCA algorithm in Bai, Liao
and Yang (2015) does not work due to the fixed T in our setup.

The basic idea of CCE approach in Pesaran (2006) is to approximate the
unobservable ft by the linear combination of cross-sectional averages, ȳi and
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x̄i. In our setup of unbalanced panel, we notice that models (1) and (4) can be
rewritten in a compact form as(

yit

xit

)
=

(
αyi +β

′
αxi

αx,i

)
+

(
β
′
Γi +λ

′
i

Γi

)
ft +

(
vit +β

′
ε it

ε it

)
, (5)

where t = ti (s) , s = 1, . . . ,Ti and i = 1, . . . ,N. By letting

zit
(k+1)×1

=

(
yit

xit

)
, µ i
(k+1)×1

=

(
αy,i +β

′
αxi

αxi

)
,

Ci
(k+1)×r

=

(
β
′
Γi +λ

′
i

Γ′i

)
, uit
(k+1)×1

=

(
vit +β

′
ε it

ε it

)
,

(5) can be rewritten as

zit = µ i +Cift +uit . (6)

For unbalanced panel, there are two typical ways to take cross-sectional av-
erage. The first one is to use the same set of individual units for different time
periods, and the second one is based on the actual number of observed individual
units at each time period. For the first approach, let St = {i : 1≤ i≤ N, t ∈Ti}
denote the indicator set of observed individuals at the tth period. We take the
cross-sectional average over the same set S = ∩T

t=1St for each t. That is

z̄St = µ̄S + C̄Sft + ūSt , (7)

where z̄St = n−1
∑

N
i=1 zit1i, µ̄S = n−1

∑
N
i=1 µ i1i, C̄S = n−1

∑
N
i=1 Ci1i, and ūSt =

n−1
∑

N
i=1 uit1i with n = |S | being the cardinality of set S and 1i ≡ 1(i ∈S ) .

In this case, the coefficient matrix for ft in (7) is C̄S, which is time-invariant
in contrast with that in (8). This feature facilitates the asymptotic study for the
estimates since it induces the same structure as Pesaran (2006). However, there
are some obvious efficiency loss in the approximation of factors because many
observations are not used in the cross-sectional averaging. In addition, to make
CCE work, the number of individuals in the common set S should go to infinity
at a rate faster than N1/2. The requirement can be too restrictive in empirical ap-
plications and often breaks down. Therefore we prefer to the second approach.
For each t, taking the cross-sectional average over all observed individuals leads
to,

z̄t = µ̄ t + C̄tft + ūt , (8)
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where z̄t =N−1
t ∑

N
i=1 zit1it , µ̄ t =N−1

t ∑
N
i=1 µ i1it , C̄t =N−1

t ∑
N
i=1 Ci1it , ūt =N−1

t ∑
N
i=1 uit1it

with 1it ≡ 1(t ∈Ti) . However, the coefficient matrix in (8) for ft is C̄t , which is
not time-invariant and different from Pesaran (2006). If we construct the approx-
imator of ft based on (8) directly, we cannot obtain time-invariant coefficients for
z̄t in (10). Fortunately, by Assumptions 6 and 7 and Chebyshev’s inequality, we
can show that as Nt → ∞, C̄t = C+OP(N

−1/2
t ) and µ̄ t = µ +OP(N

−1/2
t ), where

C = E (Ci) and µ = E (µ i). Then we have

z̄t = µ +Cft + ū∗t (9)

where ū∗t = ūt +(µ̄ t −µ)+
(
C̄t −C

)
ft includes additional two terms: µ̄ t − µ

and
(
C̄t −C

)
ft . Now we have

ft = (C′C)−1C′ (z̄t −µ)+OP(N
−1/2
t ),

by the fact rank(C) = r ≤ k + 1 and ū∗t = OP(N
−1/2
t ) as Nt → ∞. Then, for

any t, ft can be approximated by the linear combination of µ and z̄t by using
Frish-Waugh Theorem (Sarafidis and Wansbeek, 2012).

As a result, replacing ft by (C′C)−1C′ (z̄t −µ) leads to the augmented re-
gression model for (1) as follows

yit = α
∗
yi +x′itβ +b′iz̄t + ε it , (10)

where α∗yi = αyi + a′iµ with ai and bi are nuisance parameters. Rewrite model
(10) in vector form we have

yiTi
Ti×1

= α
∗
yi 1Ti

Ti×1
+XiTi

Ti×k
β

k×1
+ Z̄Ti

Ti×(k+1)
bi

(k+1)×1
+ ε iTi

Ti×1
, (11)

where yiTi =
(
yiti(1), . . . ,yiti(Ti)

)′
, Xi,Ti =

(
xiti(1), . . . ,xiti(Ti)

)′
, Z̄Ti = (z̄1, . . . , z̄Ti)

′,
ε iTi =

(
ε iti(1), . . . ,ε iti(Ti)

)′
, and 1Ti is a Ti×1 vector of ones.

The CCE-UB estimator of β based on model (11) is given by

β̂
UB
CCE =

(
∑

N
i=1 X′iTi

MHiXiTi

)−1
∑

N
i=1 X′iTi

MHiyiTi , (12)

where the superscript “UB” stands for unbalanced panel and MHi = ITi−H̄Ti(H̄′Ti
H̄Ti)

−1H̄′Ti

with H̄i =
(
1Ti , Z̄Ti

)
.

Let FTi =(fti(1), . . . , fti(Ti))
′, GTi =(1Ti ,FTi), and MGi = ITi−GTi(G′Ti

GTi)
−1G′Ti

.
Define

DN (GTi) =
1
N ∑

N
i=1 X′iTi

MGiXiTi and D = plim
N→∞

DN (GTi) .
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Similarly, we write DN
(
H̄Ti

)
= 1

N ∑
N
i=1 X′iTi

MHiXiTi .

We establish the asymptotic properties for β̂
UB
CCE in the following theorem.

Theorem 1. Suppose Assumptions 1-6 and rank(C) = r ≤ k+1 hold. If Ñ→ ∞

as N→ ∞,

β̂
UB
CCE

p→ β .

Further, if Assumption 7 also holds, then

√
N
(

β̂
UB
CCE −β

)
d→ N (0,V)

where V = D−1ΣD−1 and Σ = plimN→∞
1
N ∑

N
i=1 X′iTi

MGiΩvMGiXiTi .

Theorem 1 establishes the consistency of CCE-UB estimate and derives its
limiting distribution. The proof is tedious and is therefore relegated to Appendix.
Note that the condition on the number Ñ to ensure consistency is much weaker
than that used in deriving the asymptotic distribution.

To carry out the statistical inference, we have to construct the estimator for
the asymptotic variance matrix V of β̂

UB
CCE . A consistent variance estimator can

be reached by

V̂ = D−1
N
(
H̄Ti

)
Ω̂D−1

N

(
H̄Ti

)
(13)

where D and Σ in V are replaced by DN
(
H̄Ti

)
and

Σ̂ =
1
N ∑

N
i=1 X′iTi

MHi êiTi ê
′
iTi

MHiXiTi (14)

respectively, where êiTi = MHiyiTi −MHiXiTi β̂
UB
CCE . When T is not small, a con-

sistent variance estimator can be constructed by following the argument of White
(2001) and Pesaran (2006).

Remark 2. In the case when Ti = Tj for i 6= j, i.e., the balanced panel case,
Sarafidis and Wansbeek (2012, P497) argue that when T is fixed, the limiting
distribution of pooled CCE (12) for heterogeneous panel is nonstandard. As we
demonstrated, for homogenous panel, even T is fixed, the pooled CCE-UB (12)
still converges to a normal distribution asymptotically which is free of nuisance
parameters. As shown in the simulation below, the pooled CCE (12) is consis-
tent, and the t-test based on our asymptotic distribution has appropriate size and
power performance in finite sample.
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4. SIMULATIONS

In this section, we investigate the finite sample performance of the CCE-
UB estimator for unbalanced panels discussed in the previous section. The data
generating process (DGP) is given by

yit = 1+αyi + x1,itβ 1 + x2,itβ 2 +λ 1i f1t +λ 2i f2t +uit , (15)

and xit’s are generated according to

xk,it = 1+ ck1λ 1i + ck2λ 2i +π i,k1 f1t +π i,k2 f2t +ηk,it , k = 1,2;

where

ηk,it = ρkiηk,it−1 + vk,it ,

with ρki are IID drawn from U [0.1,0.9] for k= 1,2 and i= 1, . . . ,N. Let αyi∼IIDN (0,1) ,

uit ∼IIDN
(
0,σ2

u,i
)
, vk,it ∼IID N

(
0,σ2

vk,i

)
for k = 1,2, and σ2

u,i, σ2
v1,i, σ2

v2,i are

independently drawn from 0.5
(
1+0.5χ2 (2)

)
. For the factors, let f jt ∼IIDN (0,1),

j = 1,2. For the factor loadings, λ ri are IID drawn from N (1,1) and π i,kr are IID
drawn from U [0,2] for i = 1,2, . . . ,N, k = 1,2, and r = 1,2. We set c11 = 0.5,
c12 = 2, c21 = 2, and c22 = 0.5.

The true value of β 1 and β 2 are set at β 1 = 1 and β 2 = 2. We let N ∈
{50,100,200,400} and Ti are the integers uniformly drawn from [5,20] in each
replication. We consider two patterns of unbalanced data:

1. UB1: Consecutive observations with common initial observed period (ti (1)=
1 for all i). The observed time periods are 1,2, ...,Ti for each i.

2. UB2: Nonconsecutive observations with different initial observed periods.
For each i, we randomly draw Ti time periods from {1,2, ...,Tmax}.

The number of replications is 1000. We report the bias, absolute bias (Abias)
and RMSE. The simulation results are given by in Table 1. From Table 1, we
can observe that the CCE-UB estimator is consistent for large N and small T.
The bias and RMSE of the CCE-UB estimators decrease with the increase of
cross-sectional dimension N for both unbalanced patterns, which suggests that
our CCE-UB estimator has good finite sample performance in estimating the
unknown slope coefficients.

To examine the statistical inference performance of the CCE-UB estimators,
for UB1, we draw the rejection frequencies plots for tests H01 : β 1 = 1 vs H11 :
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Table 1: Estimation results for DGP (15)
UB1 UB2

N β 1 β 2 β 1 β 2
50 Bias 0.0194 0.0196 0.0093 0.0167

Abias 0.1088 0.1122 0.0996 0.1022
RMSE 0.1411 0.1441 0.1273 0.1309

100 Bias 0.0088 0.0109 0.0093 0.0099
Abias 0.0780 0.0853 0.0754 0.0723
RMSE 0.1008 0.1100 0.0951 0.0935

200 Bias 0.0041 0.0026 0.0024 0.0029
Abias 0.0554 0.0587 0.0538 0.0515
RMSE 0.0742 0.0757 0.0685 0.0663

400 Bias 0.0027 -0.0006 0.0008 0.0029
Abias 0.0411 0.0407 0.0384 0.0392
RMSE 0.0526 0.0524 0.0486 0.0500

Note: Abias refers to absolute bias and RMSE is the root MSE.

β 1 6= 1 and H02 : β 2 = 2 vs H12 : β 2 6= 2 when N = 100 in Figures 1 and 2,
separately, where we use the variance estimator proposed in (13). We can see
from the figures that both tests have correct size under the null hypotheses, and
their powers increase fast as the parameters are getting away from the values
under H01 and H02, respectively.

In all, we can conclude that the CCE-UB estimator for unbalanced panel
data models with CSD has desirable finite sample properties and is suitable for
statistical inference purposes.

5. CONCLUSION

In this paper, we consider the estimation and inference of unbalanced panel
data models with cross-sectional dependence when cross-sectional dimension is
large and the time series dimension is small or fixed. We adapt the CCE approach
of Pesaran (2006) and propose the CCE-UB estimator for unbalanced panels.
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Figure 1: The plots of rejection frequencies of test H01: β 1 = 1

Figure 2: The plots of rejection frequencies of test H02: β 2 = 2
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The asymptotics of the CCE-UB is developed in the paper and it is shown to
be consistent and asymptotically normally distributed. Finite sample properties
of the CCE-UB is investigated by simulation and it is shown the CCE-UB has
desirable finite sample performance.
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Appendix

A. PROOF OF THEOREM 1

Before analyze the asymptotic properties of β̂
UB
CCE , we derive some equations

for the unobservable factors. Let A = (C′C)−1C′. Recall that

z̄t = µ +Cft + ū∗t and ft = Az̄t −Aµ̄−Aū∗t ,

where ū∗t = ūt +(µ̄ t −µ)+
(
C̄t −C

)
ft . Then

FTi = (fti(1), . . . , fti(Ti))
′ = Z̄TiA

′−
(
1Ti⊗µ

′)A′+U∗Ti
A′ (16)

where Z̄Ti ≡
(
z̄ti(1), ..., z̄ti(Ti)

)′, U∗Ti
= (ū∗ti(1), ..., ū

∗
ti(Ti)

)′ and 1Ti is a Ti× 1 vector

of ones. Let µ̄ iTi
= (µ̄ ti(1), ..., µ̄ ti(Ti)

)′ and C̄iTi =
(
C̄ti(1), ..., C̄ti(Ti)

)′
. Then rewrite

the models in (4) and (8) as follows

XiTi
Ti×k

= GTi
Ti×(r+1)

Πi
(r+1)×k

+ ε iTi
Ti×k

, (17)

H̄Ti
Ti×(k+2)

= GTi
Ti×(r+1)

P
(r+1)×(k+2)

+ U†
Ti

Ti×(k+2)

(18)

where Πi = (αxi,Γi)
′ , ε iTi =

(
ε iti(1), . . . ,ε iti(Ti)

)′
, P =

(
1 µ ′

0 C′

)
, and U†

Ti
=

(0,U∗Ti
) with U∗Ti

= ŪTi +Uµ

Ti
+Uc

Ti
, ŪTi =

(
ūti(1), . . . , ūti(Ti)

)′
,Uµ

Ti
= µ̄Ti

−(1Ti⊗µ ′) ,

and UC
Ti
= [CTi− (1Ti⊗C′)]FTi .

We summarize some preliminary results in the following lemma.

Lemma 2. Under Assumptions 1-7, when T is fixed and N → ∞, we have uni-
formly in i,

(i)
∥∥H̄Ti−GTiP

∥∥= Op(Ñ−1/2);
(ii)
∥∥(H̄′Ti

H̄Ti)
−1− (P′G′Ti

GTiP)−1
∥∥= Op(Ñ−1/2);

(iii) ‖MHi−MGi‖= Op(Ñ−1/2);

Proof. Let H̄T =
(
1T , Z̄T

)
, where 1T is T×1 vector of ones and Z̄T =(z̄1, ..., z̄T )

′.
Define GT = (1T ,F), U†

T = (0,U∗T ) and U∗T = ŪT + Uµ

T + Uc
T , where ŪT =

(ū1, . . . , ūT )
′ and Uµ

T and Uc
T are defined similarly. Noting that

E
∥∥ŪT

∥∥2
=∑

T
t=1 E ‖ūt‖2 =∑

T
t=1

1
N2

t
∑

N
i=1 E(‖uit‖2 1it)=∑

T
t=1 O

(
1
Nt

)
=O

(
1
Ñ

)
,
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we have
∥∥ŪT

∥∥ = Op(Ñ−1/2) by the Markov inequality. Similarly, we can show
that

∥∥Uµ

T

∥∥=Op(Ñ−1/2) and ‖Uc
T‖=Op(Ñ−1/2). It follows that

∥∥H̄T −GT P
∥∥=∥∥∥U†

T

∥∥∥ ≤ ∥∥ŪT
∥∥+∥∥Uµ

T

∥∥+ ‖Uc
T‖ = Op(Ñ−1/2). Noting that H̄Ti −GTiP are sub-

vector of H̄T −GT P, so we have
∥∥H̄Ti−GTiP

∥∥= Op(Ñ−1/2) uniformly in i.
(ii) Using A−1−B−1 =A−1 (B−A)B−1 and a′a−b′b= a′ (a−b)+(a−b)′ b,

we have ∥∥(H̄′Ti
H̄Ti)

−1− (P′G′Ti
GTiP)

−1∥∥
=

∥∥(H̄′Ti
H̄Ti)

−1(H̄′Ti
H̄Ti−P′G′Ti

GTiP)(P
′G′Ti

GTiP)
−1∥∥

≤
∥∥(H̄′Ti

H̄Ti)
−1∥∥∥∥(H̄′Ti

H̄Ti−P′G′Ti
GTiP)

∥∥∥∥(P′G′Ti
GTiP)

−1∥∥
≤

∥∥(H̄′Ti
H̄Ti)

−1∥∥(∥∥H̄′Ti

∥∥+‖GTiP‖
)∥∥H̄Ti−GTiP

∥∥∥∥(P′G′Ti
GTiP)

−1∥∥
= Op(Ñ−1/2)

by (i) and the fact that
∥∥H̄′Ti

∥∥=Op (1) ,‖GTiP‖=OP (1),
∥∥(H̄′Ti

H̄Ti)
−1
∥∥=OP (1)

and
∥∥(P′G′Ti

GTiP)−1
∥∥= Op (1) .

(iii) By the definition of MHi and MGi , we have

‖MHi−MGi‖ =
∥∥H̄Ti(H̄

′
Ti

H̄Ti)
−1H̄′Ti

−GTiP(P
′G′Ti

GTiP)
−1P′G′Ti

∥∥
≤

∥∥H̄Ti(H̄
′
Ti

H̄Ti)
−1(H̄′Ti

−P′G′Ti
)
∥∥

+
∥∥(H̄Ti−GTiP)(P

′G′Ti
GTiP)

−1]P′G′Ti

∥∥
+
∥∥H̄Ti [(H̄

′
Ti

H̄Ti)
−1− (P′G′Ti

GTiP)
−1]P′G′Ti

∥∥
≤ (

∥∥H̄Ti

∥∥+∥∥P′G′Ti

∥∥)∥∥(H̄′Ti
H̄Ti)

−1∥∥∥∥H̄′Ti
−P′G′Ti

∥∥
+
∥∥H̄Ti

∥∥∥∥P′G′Ti

∥∥∥∥(H̄′Ti
H̄Ti)

−1− (P′G′Ti
GTiP)

−1∥∥
= Op(Ñ−1/2),

by (i) and (ii).

Lemma 3. Under Assumption,
(i) N−1

∑
N
i=1 X′iTi

MHiXiTi = N−1
∑

N
i=1 X′iTi

MGiXiTi +Op(Ñ−1/2)

(ii) N−1
∑

N
i=1 X′iTi

MHiFTiλ i = Op[(NÑ)−1/2]+Op(Ñ−1);
(iii) N−1

∑
N
i=1 X′iTi

MHiviTi = N−1
∑

N
i=1 X′iTi

MGiviTi +Op(Ñ−1)

Proof. (i) We have
∥∥ 1

N ∑
N
i=1 X′iTi

(MHi−MGi)XiTi

∥∥≤ 1
N ∑

N
i=1

∥∥X′iTi
(MHi−MGi)XiTi

∥∥
≤ 1

N ∑
N
i=1 ‖XiTi‖

2 ‖MHi−MGi‖≤ 1
N ∑

N
i=1 ‖XiTi‖

2 maxi ‖MHi−MGi‖=Op(Ñ−1/2)
by Lemma 2 (iii).
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(ii) By (16), (17), MHiZ̄Ti = 0 and MHi (1Ti⊗µ ′) = 0, we have

1
N ∑

N
i=1 X′iTi

MHiFTiλ i =
1
N ∑

N
i=1 ε

′
iTi

MHiU
∗
Ti

A′λ i +
1
N ∑

N
i=1 Π

′
iG
′
Ti

MHiU
∗
Ti

A′λ i

≡ JN1 + JN2, say.

For JN1, we have

JN1 =
1
N ∑

N
i=1 ε

′
iTi

U†
Ti

A′λ i−
1
N ∑

N
i=1 ε

′
iTi

H̄Ti(H̄
′
Ti

H̄Ti)
−1H̄′Ti

U†
Ti

A′λ i

= JN11− JN12, say.

Noting that U†
Ti
= (0, ŪTi +Uµ

Ti
+Uc

Ti
), we have

JN11 =
1
N ∑

N
i=1 ε

′
iTi
(0, ŪTi +Uµ

Ti
+Uc

Ti
)A′λ i = (0,JN11a+JN11b+JN11c), say,

where JN11a =
1
N ∑

N
i=1 ε ′iTi

ŪTiA′λ i, JN11b =
1
N ∑

N
i=1 ε ′iTi

Uµ

Ti
A′λ i and

JN11c = 1
N ∑

N
i=1 ε ′iTi

Uc
Ti

A′λ i. For the last two terms, noting that Uµ

Ti
A′λ i and

Uc
Ti

A′λ i are independent with ε iTi , by the Chebyshev’s inequality and the fact

that E
∥∥Uµ

Ti

∥∥2
= O(Ñ−1) and E

∥∥Uc
Ti

∥∥2
= O(Ñ−1), we readily show that JN11b =

Op((NÑ)−1/2). Noting that ŪTi =(V̄Ti + ε̄ iTiβ , ε̄ iTi) where V̄Ti =
(
v̄ti(1), ..., v̄ti(Ti)

)′
and ε̄ iTi =

(
ε̄ ti(1), ..., ε̄ ti(Ti)

)′, we have

JN11a =
1
N ∑

N
i=1(ε

′
iTi

V̄Ti + ε
′
iTi

ε̄ iTiβ ,ε
′
iTi

ε̄ iTi)A
′
λ i

=
1
N ∑

N
i=1(ε

′
iTi

V̄Ti + ε
′
iTi

ε̄ iTiβ ,ε
′
iTi

ε̄ iTi)A
′
λ i

=
1
N ∑

N
i=1 ε

′
iTi

V̄Ti(β
′
Γ+λ

′)λ i +
1
N ∑

N
i=1 ε

′
iTi

ε̄ iTi [β (β
′
Γ+λ

′)+Γ
′]λ i

= JN11a (1)+ JN11a (2) , say,

where we use the definition of A in the third equation. Noting that ε iTi are in-
dependent of V̄Ti and λ i and E

∥∥V̄Ti

∥∥2
= O(Ñ−1), we can show that JN11a (1) =

Op((NÑ)−1/2) by the Chebyshev’s inequality again. For JN11a (2), let L= [β (β ′Γ+
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λ
′)+Γ′], we have

JN11a (2) =
1
N ∑

N
i=1 ε

′
iTi

ε̄ iTiLλ i =
1
N ∑

N
i=1 ∑

Ti

l=1 ε iti(l)ε̄ iti(l)Lλ i

=
1

NNti(l)
∑

N
i=1 ∑

N
j=1 ∑

Ti

l=1
1

Nt j(l)
ε iti(l)ε jt j(l)1 jt j(l)Lλ i

=
1
N ∑

N
i=1 ∑

Ti

l=1
1

Nti(l)
ε

2
iti(l)1iti(l)Lλ i

+
1
N ∑

N
i=1 ∑

N
j=1,6=i ∑

Ti

l=1
1

Nt j(l)
ε iti(l)ε jt j(l)1 jt j(l)Lλ i

= Op(Ñ−1)+Op[(NÑ)−1/2] = Op(Ñ−1)

where the last equation comes from the Chebyshev’s inequality. For JN12, we
have

JN12 =
1
N ∑

N
i=1 ε

′
iTi

GTiP(P
′G′Ti

GTiP)
−1P′G′Ti

U†
Ti

A′λ i

+
1
N ∑

N
i=1 ε

′
iTi
(MHi−MGi)U†

Ti
A′λ i

= JN12a + JN12b, say.

We can follow the determination of the probability order of JN11 to show that
JN12a = Op(Ñ−1), and use Lemma 2 to show that

‖JN12b‖ ≤ 1
N ∑

N
i=1 ‖ε iTi‖(‖MHi−MGi‖)

∥∥∥U†
Ti

∥∥∥‖A‖ ‖λ i‖ = Op(Ñ−1).

Now we turn to the term JN2. Noting that GTiΠi = 1Ti⊗α ′xi+FTiΓi, we have

JN2 =
1
N ∑

N
i=1

(
αxi⊗ ι

′
Ti

)
MHiU

†
Ti

A′λ i +
1
N ∑

N
i=1 Γ

′
iF
′
Ti

MHiU
†
Ti

A′λ i

=
1
N ∑

N
i=1 ΓiAU†′

Ti
MHiU

†
Ti

A′λ i

where we use
(
αxi⊗1′Ti

)
MHi = 0 and MHiFTi = MHiU

†
Ti

A. Then we have

‖JN2‖ ≤
1
N ∑

N
i=1 ‖A‖

2 ‖Γi‖
∥∥∥U†

Ti

∥∥∥‖MHi‖
∥∥∥U†

Ti

∥∥∥‖λ i‖= Op(Ñ−1)

because of
∥∥∥U†

Ti

∥∥∥= Op(Ñ−1/2) and ‖MHi‖ ≤
√

tr(MHiMHi)≤
√

Ti ≤ T 1/2 < ∞.
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(iii) Write

1
N ∑

N
i=1 X′iTi

(MHi−MGi)viTi

=
1
N ∑

N
i=1 X′iTi

[
GTiP(P

′G′Ti
GTiP)

−1P′G′Ti
− H̄Ti(H̄

′
Ti

H̄Ti)
−1H̄′Ti

]
viTi

=
−1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1(H̄′Ti

−P′G′Ti
)viTi

+
1
N ∑

N
i=1 X′iTi

GTiP[(P
′G′Ti

GTiP)
−1− (H̄′Ti

H̄Ti)
−1]H̄′Ti

viTi

−1
N ∑

N
i=1 X′iTi

(
H̄Ti−GTiP

)
(H̄′Ti

H̄Ti)
−1H̄′Ti

viTi

= ∆N1 +∆N2 +∆N3, say.

For ∆N1, we have

∆N1 =
1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1U†

Ti
viTi

=
1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1(0′viTi , Ū

′
Ti

viTi +Uµ ′
Ti

viTi +Uc′
Ti

viTi)
′

= (0,∆N1a +∆N1b +∆N1c) , say,

where ∆N1a =
1
N ∑

N
i=1 X′iTi

GTiP(P′G′Ti
GTiP)−1Ū′Ti

viTi , ∆N1b =
1
N ∑

N
i=1 X′iTi

GTiP(P′G′Ti
GTiP)−1

×Uµ ′
Ti

viTi , and ∆N1c =
1
N ∑

N
i=1 X′iTi

GTiP(P′G′Ti
GTiP)−1Uc′

Ti
viTi . It is straightforward

to show that ∆N1b = Op((NÑ)−1/2) and ∆N1c = Op((NÑ)−1/2) by the Cheby-
shev’s inequality and the fact that E

∥∥Uc
Ti

∥∥2
=O(Ñ−1) and E

∥∥Uµ

Ti

∥∥2
=O((Ñ)−1).

For the first term ∆N1a, we can further decompose it as follows:

∆N1a =
1
N ∑

N
i=1 Π

′
iG
′
Ti

GTiP(P
′G′Ti

GTiP)
−1Ū′Ti

viTi

+
1
N ∑

N
i=1 ε

′
iTi

GTiP(P
′G′Ti

GTiP)
−1Ū′Ti

viTi

We can show the both terms in ∆N1a are Op((NÑ)−1/2) as the proof of JN11a =
Op((NÑ)−1/2).

For ∆N2, we have

∆N2 =
1
N ∑

N
i=1 X′iTi

GTiP[(P
′G′Ti

GTiP)
−1− (H̄′Ti

H̄Ti)
−1]GTiPviTi

+
1
N ∑

N
i=1 X′iTi

GTiP[(P
′G′Ti

GTiP)
−1− (H̄′Ti

H̄Ti)
−1]
(
H̄Ti−GTiP

)
viTi

= ∆N2a +∆N2b, say.
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We can see that ‖∆N2b‖≤ 1
N ∑

N
i=1

∥∥X′iTi

∥∥‖GTiP‖‖viTi‖
∥∥(P′G′Ti

GTiP)−1− (H̄′Ti
H̄Ti)

−1
∥∥∥∥(H̄Ti−GTiP

)∥∥= Op(Ñ−1) by Lemma 2. We rewrite ∆N2a as follows

∆N2a =
1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1[H̄′Ti

H̄Ti−P′G′Ti
GTiP](H̄

′
Ti

H̄Ti)
−1GTiPviTi

=
1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1[H̄′Ti

H̄Ti−P′G′Ti
GTiP](P

′G′Ti
GTiP)

−1GTiPviTi

+
1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1[H̄′Ti

H̄Ti−P′G′Ti
GTiP]

×
[
(H̄′Ti

H̄Ti)
−1− (P′G′Ti

GTiP)
−1]GTiPviTi

=
1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1P′G′Ti

U†
Ti
(P′G′Ti

GTiP)
−1GTiPviTi

+
1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1U†′

Ti
U†

Ti
(P′G′Ti

GTiP)
−1GTiPviTi

+
1
N ∑

N
i=1 X′iTi

GTiP(P
′G′Ti

GTiP)
−1U†′

Ti
GTiP(P

′G′Ti
GTiP)

−1GTiPviTi +Op(Ñ−1)

= Op(Ñ−1)

where we show that the first and third term are Op(Ñ−1) by following the proof
of ∆N1 = Op(Ñ−1), and bound the second term by Op(Ñ−1) using the fact that∥∥∥U†

Ti

∥∥∥2
= Op(Ñ−1).

Lastly, by Lemma 2, we have ∆N3 = 1
N ∑

N
i=1 X′iTi

U†
Ti
(P′G′Ti

GTiP)−1GTiPviTi

+Op(Ñ−1). It is easy to prove that the first term is Op(Ñ−1) using the similar
arguments in the proof of ∆N1. It follows that ∆N3 = Op(Ñ−1).

Proof of Theorem 1. (i) Note that model (1) can be rewritten in vector form as

yiTi = αyi1Ti +XiTiβ +FTi
λ i +viTi , (19)

then the CCE-UB estimator (12) can be written as

β̂
UB
CCE =

(
∑

N
i=1 X′iTi

MHiXiTi

)−1
∑

N
i=1 X′iTi

MHi (αyi1Ti +Xiβ +FTiλ i +viTi)

= β +

(
1
N ∑

N
i=1 X′iTi

MHiXiTi

)−1 1
N ∑

N
i=1 X′iTi

MHi (FTiλ i +viTi)

= β +

(
1
N ∑

N
i=1 X′iTi

MGiXiTi

)−1 1
N ∑

N
i=1 X′iTi

MGiviTi +Op(Ñ−1) (20)

where we use the fact that MHi1Ti = 0 at the second equation and Lemma (3) in
the last equation. Conditional on F ≡ σ{f1, ..., fT},3 the sigma field generated

3Alternatively, we can treat F as fixed.
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by f1, ..., fT , we can show that N−1
∑

N
i=1 X′iTi

MGiXiTi

p→D and N−1
∑

N
i=1 X′iTi

MGiviTi

p→
0 by the Law of Large Number (LLN) for inid sequence under Assumptions 1-6.
Then β̂

UB
CCE

p→ β as N→ ∞ by Continuous Mapping Theorem.

(ii) Under Assumptions 1-7, we can show that 1√
N ∑

N
i=1 X′iTi

MGiviTi

d→N (0,Σ)
by central limiting theorem (CLT) for inid observations conditional on F . Not-
ing that N−1

∑
N
i=1 X′iTi

MGiXiTi

p→ D, we have

√
N(β̂

UB
CCE −β )

d→ N(0,D−1
ΣD−1),

by the Slutsky lemma.
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