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Abstract A popular approach to forecast variance is to use the fitted value
of a simple OLS autoregression of realized variance measures. However, many
financial returns are known to have highly persistent and possibly nonstationary
volatilities. Under the nonstationarity, the asymptotic behaviors of the OLS es-
timators are unclear. We consider the autoregressions with spot, integrated, and
realized variance measures when the spot variance process is nonstationary, and
derive the asymptotic properties of the OLS estimators of the autoregressions. In
particular, the asymptotic biases of the OLS estimators for the regressions with
the integrated and realized variances are obtained. We then consider a feasi-
ble instrumental variable (IV) approach to reduce the bias of the OLS estimator,
where the instrument equals the lagged value of the variable of interest, and show
that the feasible IV estimator obtained from the realized variance is asymptot-
ically equivalent to the infeasible OLS estimator obtained from the regression
with the spot variance. Simulation results corroborate the theoretical findings of
the paper.
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1. INTRODUCTION

This paper considers a regression-based forecasting of future variance using
high frequency variance measures. In practice, a popular approach is to ap-
proximate the latent spot or integrated variance by realized variance measures
using high frequency data such as realized variance (Andersen et al., 2001) or
robust-to-noise measures (Zhang et al., 2011; Barndorff-Nielsen et al., 2008; Ja-
cod et al., 2009), and then estimate a simple autoregressive regression of these
realized measures by OLS to get a forecast of the spot or integrated variance.
This approach based on autoregressive regressions is often misspecified because
the dynamics of the spot and integrated variances are more complex than sim-
ple autoregressive processes. For instance, if the true spot variance follows a
square-root process, then the integrated and realized variances become ARMA
(1,1) processes (Barndorff-Nielsen and Shephard (2002); Meddahi (2003)). Still,
even if the autoregressive model is not correctly specified, it provides a very ac-
curate forecast because the integrated variance as well as high frequency-based
realized measures are persistent and therefore, only few lags are sufficient to
predict well future variance (Andersen et al., 2003, 2004).

The properties of volatility regressions are well known under the assumption
that the spot variance process is stationary. Andersen et al. (2004) consider au-
toregressions of the variance processes in population when the spot variance is
stationary and has a finite second moment. The results of Andersen et al. (2004)
are revisited by Kim and Meddahi (2020), in which empirical autoregressions of
the variance processes are considered when the spot variance is stationary, but
may have unbounded second moment. Both papers show that the OLS estimator
of the feasible autoregressions with the realized variance measures is (asymp-
totically) biased, and may yield imprecise forecasts for the underlying variance
measures such as spot or integrated variances. To solve the bias issue in the OLS-
based forecasts, Kim and Meddahi (2020) propose an instrumental variable (IV)
approach and show that the IV estimator has a smaller asymptotic bias compared
to the OLS estimator under the stationarity.

Many key financial returns are known to have highly persistent and possi-
bly nonstationary volatilities (see, e.g., Bollerslev and Wright (2000), Hansen
and Lunde (2014) and Zhang and Han (2014)). It is also a well-known stylized
fact that GARCH models fit to stock return data yield parameter estimates re-
flecting high persistence as they (nearly) violate stationarity conditions, and this
phenomenon is often referred to as (near-)integrated GARCH (see, e.g., (Engle
and Rangel, 2008)). However, the properties of the nonstationary volatility re-
gressions are largely unknown. In particular, it is completely unknown about
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the asymptotic biases of the OLS estimators applied to the nonstationary volatil-
ity regressions with various variance measures as well as the validity of the IV
approach of Kim and Meddahi (2020).

The goal of this paper is to fill the gaps between stationary and nonstation-
ary volatility regressions by providing the asymptotic properties of the OLS and
IV estimators for the nonstationary volatility regressions. First, we develop the
asymptotics of the OLS estimators for the nonstationary volatility regressions,
and provide the exact forms of the asymptotic biases of the OLS estimators. We
then revisit the IV approach of Kim and Meddahi (2020), and show that the IV
approach obtained from the realized variance remains valid and provides a ro-
bust estimation of the OLS regression estimator for the volatility regression with
the spot variance. Simulation results corroborate the theoretical findings of the
paper.

The paper is organized as follows. Section 2 provides the setup, various
regressions, and the primary asymptotics. In Section 3, we provide the main
results including the long span asymptotics of the OLS and IV estimators as well
as simulations to assess the finite sample properties of the estimators. Section 4
concludes the paper, and all the proofs are provided in the Appendix.

Throughout the paper, we use “PT ∼ QT ” to denote PT = QT (1 + o(1)).
Similarly, “PT ∼p QT ” and “PT ∼d QT ” mean PT = QT (1+ op(1)) and PT =d
QT (1+op(1)), respectively. These notations, as well as other standard notations
used in asymptotics, will be used frequently throughout the paper without further
references.

2. MODEL AND PRELIMINARIES

2.1. SPOT, INTEGRATED AND REALIZED VARIANCES

Consider a price process (Pt ,0 ≤ t ≤ T ) defined on a filtered probability
space (Ω,F ,(Ft)t≥0,P). Assume that Pt is a Brownian semimartingale with the
following form:

d log(Pt) = Dtdt + |Vt |1/2dW P
t ,

where W P
t is a Brownian motion, Dt and Vt are adapted processes with càdlàg

paths. For a ∆-interval, we define the spot variance (vi), integrated variance (xi)
and realized variance (yi) of the price process (Pt) as

vi =Vi∆, xi =
1
∆

∫ i∆

(i−1)∆
Vtdt, yi =

1
∆

n

∑
j=1

(
r(δ )(i−1)∆+ jδ

)2
, (1)
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for i = 1, · · · ,N with N∆ = T , where r(δ ) is the δ -period return defined as
r(δ )(i−1)∆+ jδ = log(P(i−1)∆+ jδ )− log(P(i−1)∆+( j−1)δ ) for j = 1, · · · ,n with nδ = ∆.
It is well known that the realized variance y is a noisy measure of the integrated
variance x, and satisfies

(n/2)1/2(yi − xi)→d ηiN(0,1), (2)

where η2
i =∆−1 ∫ i∆

(i−1)∆V 2
t dt, as n→∞ for fixed ∆ and for each i= 1, · · · ,N. See,

e.g., ?. For a fixed T = N∆, the convergence (2) holds jointly for i = 1, · · · ,N
(see, e.g., (Jacod and Protter, 1998)).

In this paper, we analyze the asymptotic properties of the least squares es-
timator for the volatility regression with a nonstationary variance process V .
Specifically, we consider the autoregression

zi+1 = αz +β
(k)
z zi−k +ui+1 with k ≥ 0 (3)

for z = v,x,y, and estimate the slope coefficient β
(k)
z using the OLS estimator.

Our asymptotics for the spot variance v and the integrated variance y involve
two parameters, the sampling interval ∆ and the time span T , and the asymptotic
properties are developed under the assumption that ∆ → 0 and T → ∞ simultane-
ously. On the other hand, the asymptotics for the realized variance involve three
parameters, the sampling interval ∆ at low-frequency, the sampling interval δ at
high-frequency, and the time span T . In this case, the asymptotics are developed
under the assumption that δ/∆ → 0, ∆ → 0 and T → ∞ simultaneously.

As for the large T asymptotics in Section 3, we assume that the underlying
variance process V is a diffusion process on D = (v,v)⊂ R driven by

dVt = µ(Vt)dt +σ(Vt)dWt , (4)

where W is a Brownian motion, and µ and σ are respectively drift and diffusion
functions of V . To obtain more explicit asymptotic results, we mainly consider
a pure diffusion V without having leverage effects, i.e., each of V and D is inde-
pendent of W P.

We let s be the scale function defined as

s(v) =
∫ v

y
exp

(
−
∫ x

y

2µ(z)
σ2(z)

dz
)

dx, (5)

where the lower limits of the integrals can be arbitrarily chosen to be any point
y ∈ D . Defined as such, the scale function s is uniquely identified up to any
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increasing affine transformation, i.e., if s is a scale function, then so is as+b for
any constants a > 0 and −∞ < b < ∞. We also define the speed density

m(v) =
1

(σ2s′)(v)
(6)

on D , where s′ is the derivative of s, often called the scale density, which is
assumed to exist. The speed density is defined to be the measure on D given by
the speed density with respect to the Lebesgue measure.

Throughout this paper, we assume

Assumption 1. (a) σ2(v) > 0 for all v ∈ D , and (b) µ(v)/σ2(v) and 1/σ2(v)
are locally integrable at every v ∈ D .

Assumption 1 provides a simple sufficient set of conditions to ensure that a
weak solution to the stochastic differential equation (4) exists uniquely up to an
explosion time. See, e.g., Theorem 5.5.15 in Karatzas and Shreve (1991). Note,
under Assumption 1, that both the scale function s and speed density m are well
defined, and that the scale function is strictly increasing, on D . Consequently,
the natural scale diffusion V s of V , where V s = s(V ), is well defined with speed
density ms = (m/s′) ◦ s−1. Moreover, under Assumption 1, the diffusion V is
recurrent if and only if the scale function s is unbounded at both boundaries, i.e.,
s(v) = −∞ and s(v) = ∞. A diffusion which is not recurrent is said to be tran-
sient. Furthermore, the recurrent diffusion V becomes positive or null recurrent
depending upon

m(D)< ∞ or m(D) = ∞.

2.2. PRIMARY ASYMPTOTICS

The OLS estimator β̂
(k)
z for β

(k)
z in the autoregression (3) is given by

β̂
(k)
z =

∑
N−1
i=k+1(zi−k − zN)zi+1

∑
N−1
i=k+1(zi−k − zN)2

where zN is the sample mean of (zi−k : i = k + 1, · · · ,N − 1). For k = 0, we
simply write β

(0)
z = βz and β̂

(0)
z = β̂z.

Recall that T =N∆ and ∆= nδ . For our asymptotics here we let δ/∆,∆→ 0,
with T being fixed or T → ∞ simultaneously as δ/∆,∆ → 0. In case we have
δ/∆,∆ → 0 and T → ∞ simultaneously, we assume that δ/∆,∆ → 0 sufficiently
fast relative to T → ∞. It is indeed more relevant in a majority of practical
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applications, which rely on observations collected at small sampling intervals
over moderately long span.

In our asymptotics, various functional transforms of D and V over time in-
terval [0,T ] need to be properly controlled. To effectively handle such functional
transforms of D and V , we define

TD = max
0≤t≤T

|Dt | and TV ( f ) = max
0≤t≤T

| f (Vt)|

for some function f : D → R. We also denote by ι the identity function on D ,
and ι(v) = v for all v ∈ D . Consequently, we have TV (ι) = max0≤t≤T |Vt | for the
identity function. Obviously, TD and TV (ι) are the asymptotic orders of extremal
process of D and V , respectively. The order of the extremal process is known
for a wide class of diffusions (see, e.g., Kim and Park (2017) for a nonstationary
diffusion, and Davis (1982) for a stationary diffusion). More generally, we may
obtain the exact rate of TV ( f ) from the asymptotic behavior of extremal process.
In particular, if f is regularly varying and cT is the order of the extremal process,
then the asymptotic order of TV ( f ) is given by Op( f (cT )).

Assumption 2. (a) σ2 is twice continuously differentiable on D , and (b) for
f = µ , σ2, σ2′ , σ2′′ and ι , there is a locally bounded function ω : D → R such
that | f (v)| ≤ ω(v) for all v ∈ D .

The differentiability condition of σ2 in Assumption 2 (a) is routinely as-
sumed in the study of diffusion models. Under Assumption 2 (a), the majorizing
function ω in Assumption 2 (b) always exists as long as µ is locally bounded.

Assumption 3. For ω in Assumption 2, ∆TV (ω
8)T 2 log(T/∆)→p 0.

Assumption 4. For ω in Assumption 2, (δ/∆)TV (ω
8)T 2 log3(T/δ )→p 0.

Assumption 5. (δ/∆)T 4
DT →p 0.

Assumption 6. (δ/∆2) = O(1).

Assumption 3 is similar to Assumption 5.1 in Kim and Park (2017), and
provides a sufficient condition for our primary asymptotics of spot variance (vi)
and integrated variance (xi). On the other hand, the asymptotics of realized
variance (yi) involve three parameters, δ , ∆ and T , and require Assumptions 4-
6 in addition to Assumption 3. Those assumptions are introduced in Kim and
Meddahi (2020). The role of Assumption 4 is to analyze the asymptotic effect
of the errors (xi − yi) in the OLS estimates. On the other hand, Assumption 5 is



JIHYUN KIM 81

a condition to handle the effects from the drift part (Dt) in (Pt) so that (Dt) has
only asymptotically negligible effects to the asymptotics of the OLS estimates
with (yi). Lastly, Assumption 6 is to exclude less interesting situations where
the errors (xi − yi) dominate the signals (xi) in the OLS estimates with (yi). In
particular, if δ/∆2 → ∞, then the error components may have bigger stochastic
order than the signals.

Under Assumptions 2-6, Kim and Meddahi (2020) develop the primary asymp-
totics for β̂

(k)
z as follows.

Proposition 1. Let Assumptions 2-6 hold. As ∆ → 0 and δ/∆ → 0, we have

β̂v −1 ∼p ∆

∫ T
0 (Vt −V T )dVt∫ T
0 (Vt −V T )2dt

,

β̂x −1 ∼p ∆

∫ T
0 (Vt −V T )dVt +(1/6)[V ]T∫ T

0 (Vt −V T )2dt
,

β̂y −1 ∼p ∆

∫ T
0 (Vt −V T )dVt +(1/6)[V ]T − (2δ/∆2)

∫ T
0 V 2

t dt∫ T
0 (Vt −V T )2dt

,

and β̂
(k)
z − 1 ∼p (β̂z − 1)+ k(β̂v − 1) for all large T , where ([V ]t ,0 ≤ t ≤ T ) is

the quadratic variation process of (Vt ,0 ≤ t ≤ T ), and V T = T−1 ∫ T
0 Vtdt.

The primary asymptotics in Proposition 1 do not require the long span as-
sumption of T →∞. In particular, if T is fixed, then (N/T )(β̂z−1) = (1/∆)(β̂z−
1) is random for all z = v,x,y, and is characterized by a particular realization of
the underlying variance process V . Under the fixed T asymptotic scheme, the
law of motion of the variance process V is less important in the asymptotics
of β̂z for all z = v,x,y. Importantly, the primary asymptotics in Proposition 1
require neither certain moment conditions nor stationarity. However, the under-
lying probabilistic structure of V becomes crucial in the development of the large
T asymptotics of β̂z. In particular, the large T asymptotics depend heavily on the
stationarity of V . In the following section, we develop the large T asymptotics
of β̂z when V is nonstationary.1

1The reader is referred to Kim and Meddahi (2020) for the large T asymptotics of β̂z when V
is stationary.
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3. MAIN RESULTS

3.1. LONG SPAN ASYMPTOTICS

In our large T asymptotics, we only consider a recurrent nonstationary diffu-
sion V to effectively analyze consequences of the nonstationarity in the volatility
regressions. Accordingly, we assume that the scale function s in (5) and the
speed density m in (6) satisfy the following conditions:

Assumption 7. (a) s(v) =−∞ and s(v) = ∞, and (b)
∫
D m(v)dv = ∞.

Assumption 7 (a) implies that the diffusion process V is recurrent. More-
over, under Assumption 7 (b), jointly with (a), V becomes null recurrent and is
nonstationary. A prime example of null recurrent diffusions is a Brownian mo-
tion. Null recurrent diffusions do not have time invariant distributions. Note, in
particular, that Kim and Meddahi (2020) assume

∫
D m(v)dv < ∞, which implies

that V is positive recurrent and has a time invariant distribution.2

In our asymptotics, we frequently deal with nonintegrable functions with re-
spect to the speed density m of V . To effectively analyze m-nonintegrable func-
tions, we need some regularity conditions. Following Kim and Park (2017), it
will be maintained throughout the paper that all m-nonintegrable functions f are
m-regularly varying, i.e., m f is regularly varying on D . For a m-nonintegrable
function f , we say that f is m-strongly nonintegrable if f ℓ is not m-integrable
for any slowly varying function ℓ on D . On the other hand, we say that f is
m-nearly integrable if f ℓ is m-integrable for some slowly varying function ℓ on
D . Moreover, we let fs = f ◦ s−1 for any function f on D other than m.3 More-
over, for a regularly varying function f on R, we define its limit homogeneous
function f as f (λv)/ f (λ )→ f (v) as λ → ∞ for all v ̸= 0.

We assume that

Assumption 8. (a) s′ is regularly varying or rapidly varying with index c ̸=−1,
(b) σ2 is regularly varying, (c) σ2 is m-strongly nonintegrable, and (d) m is
strongly nonintegrable.

Assumption 8 (a) and (b) appear in Kim and Park (2018), and are mild
enough to include most diffusion processes used in practice. Under Assumption

2The time invariant density of the positive recurrent diffusion V is given by π(v) =
m(v)/

∫
D m(v)dv. Positive recurrent diffusions become stationary if they are started from the

time invariant distributions.
3In Section 2.1, ms is defined as ms = (m/s′)◦ s−1 which is the speed density of natural scale

diffusion V s = s(V ) of the underlying diffusion V .
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8 (a), in particular, s−1 is regularly varying and its limit homogeneous function
s−1 is well defined. The reader is also referred to Bingham et al. (1993) for more
discussions about the regularly and rapidly varying functions. In Assumption 8
(c), we assume that σ2 is m-strongly nonintegrable. This assumption is a techni-
cal condition to simplify our discussions below. Our subsequent theory can also
be developed under the m-near integrablility and m-integrability at the cost of
more involved analysis (see Kim and Park (2017, 2018) for the related discus-
sions). Assumption 8 (d) is to exclude the barely nonstationary case introduced
in Kim and Park (2017). We note that the asymptotics of a barely nonstationary
process are similar to those of a stationary process.4

We let (λT ) be the normalizing sequence satisfying T = λ 2
T ms(λT ), where ms

is the speed density of natural scale diffusion V s = s(V ) of the underlying diffu-
sion V . We define V T by V T

t = VTt/s−1(λT ) for t ∈ [0,1] with the normalizing
sequence λT . It then follows from Proposition 3.2 of Kim and Park (2017) that
V T →d V ◦ as T → ∞ in the space C[0,1] of continuous functions with uniform
topology, where using Brownian motion B and its local time L we may represent
the limit process V ◦ as

V ◦
t = s−1(B◦At), with At = inf

{
s
∣∣∫

R
L(s,x)ms(dx)> t

}
,

where, in particular, s−1 is well defined under Assumption 8 (a), and ms is well
defined under Assumption 7 (b) and Assumption 8 (a) and (d).

The long span asymptotics for β̂z can be obtained by letting T → ∞ to the
primary asymptotics in Proposition 1.

Theorem 1. Let Assumptions 2-8 hold. As δ/∆,∆ → 0 and T → ∞, we have

β̂v −1 ∼d
∆

T

∫ 1
0 (V

◦
t −V ◦

1)dV ◦
t∫ 1

0 (V
◦

t −V ◦
1)

2dt
,

β̂x −1 ∼d
∆

T

∫ 1
0 (V

◦
t −V ◦

1)dV ◦
t +(1/6)[V ◦]1∫ 1

0 (V
◦

t −V ◦
1)

2dt
,

β̂y −1 ∼d
∆

T

∫ 1
0 (V

◦
t −V ◦

1)dV ◦
t +(1/6)[V ◦]1 −2(δ/∆2)

∫ 1
0 V ◦2

t dt∫ 1
0 (V

◦
t −V ◦

1)
2dt

,

where ([V ◦]t ,0 ≤ t ≤ 1) is the quadratic variation process of (V ◦
t ,0 ≤ t ≤ 1),

and V ◦
1 =

∫ 1
0 V ◦

t dt.
4The reader is referred to Sections 2 and 3 of Kim and Park (2017) for a precise definition of

the barely nonstationarity and related discussions.
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Remark 2. The stationary and nonstationary volatility regressions have some
similarities and differences when they are estimated by the OLS estimator.

(a) As in the stationary volatility regressions in Kim and Meddahi (2020),
the OLS estimators in the nonstationary regressions satisfy β̂v < β̂x and β̂y <

β̂x with probability approaching one. As noted in Kim and Meddahi (2020),
the integrated variance (xi) has a smoother sample path than that of the spot
variance (vi), which yields β̂v < β̂x. On the other hand, the realized variance (yi)
is a noisy measure of (xi), and the noise induces downward bias with β̂y < β̂x.

(b) The limit of normalized β̂z − 1 is always random in the nonstationary
volatility regressions. In the stationary volatility regressions, however, the nor-
malized β̂z − 1 has a non-random limit as long as some moment conditions are
satisfied. As an illustration, we consider a stationary Ornstein-Uhlenbeck pro-
cess V , given as

dVt = κ(µ −Vt)dt +σdWt ,

for which we have E(σ2(Vt)) = σ2, Var(Vt) = σ2/(2κ) and E(V 2
t ) = σ2/(2κ)+

µ2. It is shown in Kim and Meddahi (2020) (see Remark 3.3 (b)) that
N
T
(β̂v −1)∼p −κ,

N
T
(β̂x −1)∼p −

2
3

κ,

N
T
(β̂y −1)∼p −

2
3

κ −2
δ

∆2

(
1+

2κµ2

σ2

)
.

However, if V is a Brownian motion with V = σW, then V is nonstationary and

N(β̂v −1)∼d

∫ 1
0 (Wt −W 1)dWt∫ 1
0 (Wt −W 1)2dt

, N(β̂x −1)∼d

∫ 1
0 (Wt −W 1)dWt +(1/6)∫ 1

0 (Wt −W 1)2dt
,

N(β̂y −1)∼d

∫ 1
0 (Wt −W 1)dWt +(1/6)+2(δ/∆)

∫ 1
0 W 2

t dt∫ 1
0 (Wt −W 1)2dt

.

Clearly, the limit of normalized β̂z−1 is non-random for the stationary Ornstein-
Uhlenbeck process V , whereas it becomes random for the Brownian V . More-
over, the OLS estimators in the nonstationary volatility regressions have faster
rates of convergence than those of the stationary volatility regressions. We
also note that N(β̂v − 1) converges to the Dickey-Fuller distribution, whereas
N(β̂x − 1) and N(β̂y − 1) are asymptotically biased from N(β̂v − 1) and do not
converge to the Dickey-Fuller distribution.

In the volatility regressions, a feasible regression is the regression with the
realized variance (yi) since neither the spot variance (vi) nor the integrated vari-
ance (xi) is observable in reality. Moreover, researchers and financial practi-
tioners are often interested in the regression with the spot or integrated variance
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depending upon their objectives. Our asymptotic results in Theorem 1 for the
nonstationary volatility regressions imply that the feasible regression with (yi)
is asymptotically biased and may provide misleading forecasts for (vi) or (xi)
as in the stationary volatility regression (see Theorem 3.4 of Kim and Meddahi
(2020)). In Section 3.2, we show that the IV approach proposed by Kim and
Meddahi (2020) reduces the asymptotic bias of the OLS estimator for the non-
stationary volatility regressions. Combined with the results in Kim and Meddahi
(2020), we may say that the IV approach is a robust method for the bias cor-
rection which can be applicable for both stationary and nonstationary volatility
regressions.

3.2. A ROBUST ESTIMATION: KIM AND MEDDAHI’S IV APPROACH

The bias issue of stationary volatility regressions is well known in the lit-
erature (see Andersen et al. (2004); Kim and Meddahi (2020)). To overcome
the bias issue, an instrumental variable (IV) approach has been proposed by
Kim and Meddahi (2020). However, the validity of the IV method has been
unknown for the nonstationary volatility regressions. Below we show that the
IV approach proposed by Kim and Meddahi (2020) remains valid for the non-
stationary volatility regressions.

Consider an IV estimator

β̌z =
∑

N−1
i=2 (zi−1 − zN)(zi+1 − zN)

∑
N−1
i=2 (zi−1 − zN)(zi − zN)

,

which is the IV estimator with an instrument zi−1− zN for zi− zN . Note that Kim
and Meddahi (2020) consider a more general class of IV estimators with the in-
strument being nonlinear transformations of the lagged value of the variable of
interest, and the IV estimator β̌z above is a special case of Kim and Meddahi
(2020)’s nonlinear IV approach with the transformation being the identity func-
tion. Below we show that the IV estimator β̌z has a smaller asymptotic bias than
the OLS estimator β̂z for the nonstationary volatility regressions. It is interesting
to consider the asymptotic behavior of the general nonlinear IV approach and to
analyze the efficiency comparisons among various choices of transformations.
However, the analysis of the efficiency or optimality is beyond of the scope of
this paper, and we leave them for future research.
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For the asymptotics of β̌z, we write

β̌z −1 =
∑

N−1
i=2 (zi−1 − zN)(zi+1 − zi)

∑
N−1
i=2 (zi−1 − zN)(zi − zN)

=
∑

N−1
i=2 (zi−1 − zN)(zi+1 − zi−1)

∑
N−1
i=2 (zi−1 − zN)(zi − zN)

− ∑
N−1
i=2 (zi−1 − zN)(zi − zi−1)

∑
N−1
i=2 (zi−1 − zN)(zi − zN)

≡ φz −ψz.

The following proposition provides the asymptotic properties of φz and ψz as
well as β̂z −1 for z = v,x,y.

Proposition 2. Let Assumptions 2-8 hold, and let δ/∆,∆ → 0 and T → ∞. For
z = v,x,y, we have φz ∼p β̂

(1)
z −1 and ψz ∼p β̂z −1 with β̂

(1)
z −1 ∼p (β̂z −1)+

(β̂v −1), and therefore,

β̌z −1 ∼p β̂v −1 ∼d
∆

T

∫ 1
0 (V

◦
t −V ◦

1)dV ◦
t∫ 1

0 (V
◦

t −V ◦
1)

2dt
.

Unlike β̂z−1, the limits of β̌z−1 are given by β̂v−1 (up to the order of ∆/T )
for all z= v,x,y. In particular, Proposition 2 provides the asymptotic equivalence
between the feasible OLS estimator β̌y and the infeasible OLS estimator β̂v up
to the order of ∆/T . Moreover, we may expect that the feasible IV estimator β̌y

is more closer to the infeasible OLS estimator β̂v, which is the object of interests
in our volatility regressions, than the feasible OLS estimator β̂y.

To see the performance of the IV approach, we simulate nonstationary volatil-
ity regression models with no drift Dt = 0 for all t. As for the underlying variance
process, we consider two designs

Model BM: Vt =Wt ,

Model HK: dVt = aVt(c+V 2
t )

b−1dt +(c+V 2
t )

b/2dWt ,

where E[dWtdW P
t ] = 0. Model BM is a Brownian variance process, and Model

HK is the generalized Höpfner-Kutoyants model proposed by Kim and Park
(2018). In particular, Model HK encompasses several diffusion models intro-
duced in the literature. If, for instance, a = 0 or b = 0, Model HK reduces to
the diffusion considered by Chen et al. (2010) or Höpfner and Kutoyants (2003),
respectively.5 In our simulations of Model HK, we let (a, b, c) = (-1/4, 1/10,
1/100), for which the process becomes null recurrent satisfying Assumption 8.6

5If a = b = 0, then Model HK becomes Model BM.
6The reader is referred to Kim and Park (2018) for more detailed discussions about the gen-

eralized Höpfner-Kutoyants model.
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As an illustration, Figure 1 depicts three sample paths of Model HK with the
parameter values used in our simulation.7

The simulation samples are generated by the Euler discretization at 5 minutes
for T = 500 days corresponding to 2 years, and the number of simulations is
5,000. We assume that the market is open 24 hours. For each day (∆ = 1), we
set the daily spot variance as the spot variance at the end of the day, while the
integrated variance is computed by the numerical integration of the simulated
spot variance process at 5 minutes. The realized variance is also computed using
the simulated returns at the frequency of 5 minutes with δ/∆ = 1/288.

Table 1: Mean Squared Deviations (×10,000) of β̂z and β̌z for z = x,y

MSD(β̂x) MSD(β̂y) MSD(β̌x) MSD(β̌y)
Model BM 0.667 6.092 0.044 0.146
Model HK 2.418 2.886 0.243 0.329

Figure 2 depicts the empirical distributions of β̂v− β̂z (blue) and β̂v− β̌z (red)
for z = x,y. The empirical distributions are coherent with the theory, and the IV
approach reduces significantly the bias of the OLS estimators. In particular, the
IV approach performs well in the feasible volatility regression with the realized
varaince. We also compute the mean squared deviations (MSD) of β̂z and β̌z from
β̂v, and the results are summarized in Tables 1 and 2. Clearly, the IV estimator β̌z

has a smaller MSD compared to the corresponding OLS estimator β̂z for z = x,y.
Importantly, in the feasible volatility regression with the realized variance (yi),
the MSDs of the feasible IV estimators β̌y are only 2.4% for Model BM and
11.4% for Model HK of those of the feasible OLS estimators β̂y (see Table 2).

Table 2: Ratios of Mean Squared Deviations (in %): MSD(β̌z)/MSD(β̂z) for
z = x,y

MSD(β̌x)/MSD(β̂x) MSD(β̌y)/MSD(β̂y)
Model BM 6.6 2.4
Model HK 10.0 11.4

7We leave the modeling of nonstationary volatility processes for future research. Even though
the goal of this paper is not to propose new models for nonstationary volatility processes, Model
HK seems to be able to generate persistent and realistic dynamics as shown in Figure 1.
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4. CONCLUSION

Persistence and (near-)nonstationarity are a well-known stylized fact of fi-
nancial volatilites. The nonstationarity has been often ignored in the literature
on volatility regressions. We study the limiting behavior of the OLS estimators
of the volatility regressions of the spot, integrated and realized variances. We
show that the OLS estimators converge to random variables, and the feasible re-
gression with the realized variance is biased asymptotically. We then revisit the
IV approach of Kim and Meddahi (2020) and show that the feasible IV estimator
obtained from the realized variance is asymptotically equivalent to the infeasible
OLS estimator obtained from the spot variance. Our simulation studies show
that the IV estimator has good performances in finite samples.
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APPENDIX: PROOFS

Proof of Proposition 1. The stated results follow immediately from Proposition
3.2 of Kim and Meddahi (2020).

Proof of Theorem 1. The stated results can be obtained by letting T → ∞ to the
primary asymptotics of β̂z for each z = v,x,y obtained in Proposition 1. As for
the large T asymptotics, we let (λT ) be the normalizing sequence satisfying T =
λ 2

T ms(λT ), where ms is the speed density of natural scale diffusion V s = s(V ) of
the underlying diffusion V . We define V T by V T

t =VTt/s−1(λT ) for t ∈ [0,1] with
the normalizing sequence λT . We note that Assumption 8 (a) implies that s−1 is
regularly varying on R and its limit homogeneous function s−1 is well defined.
Moreover, the limit homogeneous function ms of ms is also well defined under
Assumption 7 (b) and Assumption 8 (a) and (d). It then follows from Proposition
3.2 of Kim and Park (2017) that

V T →d V ◦ (7)

as T → ∞ in the space C[0,1] of continuous functions with uniform topology,
where

V ◦
t = s−1(B◦At), with At = inf

{
s
∣∣∫

R
L(s,x)ms(dx)> t

}
with Brownian motion B and its local time L.

Now we are going to show that

1
T (s−1(λT ))2

∫ T

0
V 2

t dt →d

∫ 1

0
V ◦2

t dt, (8)

1
T (s−1(λT ))2

∫ T

0
(Vt −V T )

2dt →d

∫ 1

0
(V ◦

t −V ◦
1)

2dt, (9)

1
(s−1(λT ))2 [V ]T →d [V ◦]1, (10)

1
(s−1(λT ))2

∫ T

0
(Vt −V T )dVt →d

∫ 1

0
(V ◦

t −V ◦
T )dV ◦

t . (11)

For (8), we have

1
T (s−1(λT ))2

∫ T

0
V 2

t dt =
∫ 1

0
(V T

t )2dt →d

∫ 1

0
V ◦2

t dt,
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where the first equality follows from the construction of V T and the change of
variables, and the last convergence holds due to (7) and the continuous mapping
theorem. In a similar manner, we can show for (9) that

1
T (s−1(λT ))2

∫ T

0
(Vt −V T )

2dt

=
1

T (s−1(λT ))2

∫ T

0
V 2

t dt − 1
(T s−1(λT ))2

(∫ T

0
Vtdt

)2

=
∫ 1

0
(V T

t )2dt −
(∫ 1

0
V T

t dt
)2

→d

∫ 1

0
V ◦2

t dt −
(∫ 1

0
V ◦

t dt
)2

=
∫ 1

0
(V ◦

t −V ◦
1)

2dt

as desired. Moreover, the convergences (10) and (11) are developed in Lemma
3.3 of Kim and Park (2018) under the assumptions that V is null recurrent satis-
fying, in particular, Assumption 8.

Finally, we can obtain the stated results immediately by applying the conver-
gences (8)-(11) to the primary asymptotics in Proposition 1.

Proof of Proposition 2. Due to Proposition 1, we have β̂
(1)
z − 1 ∼p (β̂z − 1) +

(β̂v −1). Thus if we show

φz ∼p β̂
(1)
z −1 and ψz ∼p β̂z −1, (12)

then we have β̌z −1 = φz −ψz ∼p β̂v −1 and

β̌z −1 ∼p β̂v −1 ∼d
∆

T

∫ 1
0 (V

◦
t −V ◦

1)dV ◦
t∫ 1

0 (V
◦

t −V ◦
1)

2dt

due, in particular, to Theorem 1.
To show (12), it suffice to show that

N−1

∑
i=2

(zi−1 − zN)(zi − zN)∆−
N−1

∑
i=2

(zi−1 − zN)
2
∆

=
N−1

∑
i=2

(zi−1 − zN)(zi − zi−1)∆ = op(1) (13)
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since

φz − (β̂
(1)
z −1) = ∆

∑
N−1
i=2 (zi−1 − zN)(zi+1 − zi−1)

∑
N−1
i=2 (zi−1 − zN)(zi − zN)∆

−∆
∑

N−1
i=2 (zi−1 − zN)(zi+1 − zi−1)

∑
N−1
i=2 (zi−1 − zN)2∆

,

ψz − (β̂z −1) = ∆
∑

N−1
i=2 (zi−1 − zN)(zi − zi−1)

∑
N−1
i=2 (zi−1 − zN)(zi − zN)∆

−∆
∑

N−1
i=2 (zi−1 − zN)(zi − zi−1)

∑
N−1
i=2 (zi−1 − zN)2∆

.

For (13), we have

∆

N−1

∑
i=2

(zi−1 − zN)(zi − zi−1)

=
∆

2
{z2

N − z2
1 − zN(zN − z1)}−

∆

2

N−1

∑
i=2

(zi − zi−1)
2

∼p
∆

2
{V 2

T −V 2
0 −V T (VT −V0)}−


(∆/2)[V ]T , for z = v
(∆/3)[V ]T , for z = x
(∆/3)[V ]T +(2δ/∆)

∫ T
0 V 2

t dt, for z = y

=

{
Op(∆TV (ι

2)T )+Op(∆TV (σ
2)T ), for z = v,x

Op(∆TV (ι
2)T )+Op(∆TV (σ

2)T )+Op((δ/∆)TV (ι
2)T ), for z = y

= op(1),

where the second line holds due to the summation by parts, and the third line can
be deduced from Lemma 3.1 of Kim and Meddahi (2020), and the fourth line
follows from the construction of TV , and the last line follows immediately from
Assumptions 3 and 4. This completes the proof.
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Figure 1: Three Sample Paths of Model HK

Model HK: dVt = aVt(c+V 2
t )

b−1dt +(c+V 2
t )

b/2dWt with (a,b,c) = (−1/4,1/10,1/100)
The simulation samples are generated by the Euler discretization at 5 minutes for T = 500 days
corresponding to 2 years.
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Figure 2: Empirical Distributions of β̂v − β̂z and β̂v − β̌z for z = x,y

(a) Model BM
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(b) Model HK
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Left: β̂v − β̂x (blue) and β̂v − β̌x (red); Right: β̂v − β̂y (blue) and β̂v − β̌y (red)
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