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1. INTRODUCTION

The use of panel data in empirical economics has become popular. One ad-
vantage of using panel data is that we can allow for time-invariant unobserved
individual characteristics to be present in a model. Such time-invariant unob-
served individual characteristics can be correlated with time-varying regressors
in an arbitrary way, and the model becomes a fixed effects model. While the
unobserved time-invariant factors may cause omitted variable bias in standard
ordinary least squares estimators without controlling them, panel data allow us
to circumvent the issue about these omitted variables by using time variation in
regressors. It is very attractive to resolve the issue without requiring an excluded
variable, but this approach may not work in many nonlinear models.

This paper considers identification and estimation of a class of binary choice
models with panel data. Specifically, we focus on the following threshold cross-
ing equation model: for each time period t = 1,2, ...,T ,

Yit = 1
(

X
′
itθ + ci ≥Uit

)
, (1)

where i indexes individuals, 1(·) is an indicator function, Xit ∈ Rdx is a vector of
time-varying regressors, ci is time-invariant unobserved heterogeneity, and Uit is
a latent error term.

The time-invariant unobserved heterogeneity ci may be correlated with Xit ,
and one can employ the fixed effects approach, such as within transformation and
first-difference, to consistently estimate θ if the model is linear. However, due to
the nature of the dependent variable being binary, such approaches are not appli-
cable to model (1). One may wish to control for the time-invariant heterogeneity
by including individual-specific dummy variables into the model, but this ap-
proach may cause an incidental parameters problem (Neyman and Scott, 1948).
For this reason, it is usual to impose a specific distributional assumption on Uit

to eliminate ci. When the distribution of Uit is the standard logistic distribution,
the model becomes a fixed effects logit model (Wooldridge, 2010). While fixed
effects logit models do not suffer from the incidental parameters problem, the
resulting estimator of θ is not efficient as we cannot use the whole observations
in estimation. Another solution to the incidental parameters problem is to use
large-T panel data. There are several approaches to dealing with the incidental
parameters problem caused by the time-invariant heterogeneity when the num-
ber of time periods is large relative to the number of individuals, but they are not
applicable to microdata.1

1Fernández-Val and Weidner (2018) provide an excellent review on large-T panel data mod-
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One way to circumvent the incidental parameters problem in nonlinear panel
data models is to employ the correlated random effects (CRE) approach, which
was pioneered by Mundlak (1978) and Chamberlain (1980), to deal with the
time-invariant heterogeneity in (1). The main idea of Mundlak (1978) and Cham-
berlain (1980) is to specify the conditional expectation projection of c onto Xt’s.
The CRE approach has been used by many other studies in the literature, includ-
ing Wooldridge (1995), Wooldridge (2005), Abrevaya and Dahl (2008), Bester
and Hansen (2009), and Arellano and Bonhomme (2016), just to name a few.
The CRE approach provides flexible and tractable models, while allowing the de-
pendence between the unobserved time-invariant heterogeneity and time-varying
regressors. Among these studies, Chamberlain (1980) considers estimation of
CRE binary choice models with panel data and a parametric form of the condi-
tional expectation function of c on Xt’s. The parametric specification is tractable,
and it is easy to estimate the model parameters in practice. However, it is vulner-
able to model misspecification, which may result in inconsistency of estimators.

In this paper, we extend the binary choice model with panel data consid-
ered by Chamberlain (1980) to a class of semiparametric models. Based on the
CRE binary choice model in Chamberlain (1980), we consider a semiparametric
specification in which the conditional expectation function of c given Xt’s is non-
parametrically specified, and the finite dimensional parameter of interest is the
coefficient on Xt , θ . In doing so, our semiparametric models may alleviate the is-
sue about model misspecification. On the other hand, we impose a distributional
assumption on the latent error term, as in Chamberlain (1980). The distributional
assumption on the latent error term increases the possibility of model misspeci-
fication, but it provides much more of tractability of the model. In addition, one
can consider a wider class of distributions for the latent error term, while allow-
ing for time-invariant unobserved heterogeneity. As a result, the class of models
considered in this paper is expected to be useful in empirical analysis.

We then provide a set of conditions under which the model parameters are
identified. The key identifying assumption is that Xt should have enough time
variation. This assumption is also required for standard linear panel data models
with individual fixed effects.

We propose to use a sieve approach to estimating the model parameters
(Chen, 2007). The methods of sieve are very flexible and easy to implement in
practice. We employ the penalized sieve minimum distance (PSMD) approach
developed by Chen and Pouzo (2009). We verify the high-level conditions pro-
vided by Chen and Pouzo (2009) and establish the asymptotic theory for the

els, and one can refer to them for a detailed discussion on such models.
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estimator. Our focus is on the finite dimensional parameter θ . We develop the
asymptotic theory for the PSMD estimator, including consistency, convergence
rates, and asymptotic normality for θ . The asymptotic theory relies on large N,
and thus, the proposed estimator is applicable to short panel data. The asymp-
totic variance of the PSMD estimator of θ may be hard to be estimated. For
this reason, we show the validity of weighted bootstrap that allows us to avoid
estimating the asymptotic variance. The proposed PSMD estimator is shown to
be semiparametrically efficient when the weighting matrix is appropriately cho-
sen. The optimal weighting matrix is unknown, but it can be easily estimated by
using standard nonparametric approaches. The Monte Carlo simulation study in
this paper confirms that our PSMD estimator performs well in finite samples.

While it is common to use maximum likelihood (ML) estimation for binary
choice models, we point out that there are several advantages of the PSMD esti-
mators over semiparametric ML estimators, especially sieve ML estimators con-
sidered by Chen et al. (2006), Chen (2007), Bierens (2014), or Chen and Liao
(2014), in our setting. First, our PSMD procedure does not require to know about
the joint distribution of (Y1, ...,YT ). Although we impose a distributional assump-
tion on the model, the assumption only restricts the marginal distribution of Yt

for each t = 1,2, ...,T . The PSMD procedure in this paper does not rely on the
knowledge on the joint distribution of the dependent variable, whereas the ML
estimation requires to specify the joint distribution. Related to this point, the
PSMD estimator of θ can achieve the semiparametric efficiency bound (Newey,
1990) by appropriately choosing the weighting matrix, whereas it is required to
identify the joint distribution of endogenous variables to obtain efficient estima-
tors of finite dimensional parameters in the sieve ML framework (Chen et al.,
2006; Chen, 2007). Lastly, we can use the bootstrap to consistently estimate the
asymptotic variance of the PSMD estimator of the finite dimensional parameter,
but there is no existing result on the bootstrap validity for sieve ML estimator.

The rest of this paper is organized as follows. Section 2 describes the model
and the CRE approach, and considers identification of parameters. Section 3
explains the PSMD estimation, and Section 4 provides the asymptotic theory.
Section 5 reports the Monte Carlo simulation results, and Section 6 concludes.

Notation Before proceeding, we introduce some notation. For a generic ran-
dom variable A, the support of A is denoted by Supp(A). E[·] is the expectation
operator. For a generic (random) vector x, ||x||E denotes the Euclidean norm of
x. For a set of dx-dimensional random vectors X1,X2, ...,XT , X ≡ (X1,X2, ...,XT )

′

denotes a T ×dx random matrix (i.e., the vector that collects all Xt’s).
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2. MODEL AND IDENTIFICATION

We consider the following threshold crossing equation model: for each i ∈
{1,2, ...,n} and t ∈ {1,2, ...,T},

Yit = 1
(

X
′
itθ + ci ≥Uit

)
, (2)

where 1(·) is an indicator function, Xit ∈Rdx is a vector of time-varying reressors,
ci ∈ R is unobserved individual heterogeneity, and Uit is a time-varying latent

error term. We can only observe
(

Yit ,X
′
it

)′

from the data for all i ∈ {1,2, ...,n}
and t ∈ {1,2, ...,T}.

Unlike the linear panel data models, it is challenging to deal with the unob-
served individual heterogeneity ci in both identification and estimation when it
is correlated with some time-varying regressor. In addition, when we include in-
dividual dummy variables to incorporate ci, it is well known that the estimators
suffer from an incidental parameter problem (Neyman and Scott, 1948). One can
use a logistic specification for Uit to eliminate ci, but this approach requires that
we use not all observations in the data, which may lead to a significant loss of ef-
ficiency of the estimator. More importantly, the logistic assumption is vulnerable
to model misspecification.

In this paper, we adopt a CRE approach that was pioneered by Mundlak
(1978) and Chamberlain (1980). Specifically, we consider the following specifi-
cation for c that allows arbitrary correlations between c and Xt’s:

ci = E[ci|Xi]+Vi

≡ h(Xi)+Vi,

where Xi is the vector that collects Xit’s across all time periods, and Vi is the
conditional expectation error. Then, model (2) can be written as

Yit = 1
(

X
′
itθ +h(Xi)≥Uit −Vi

)
.

The model is a semiparametric extension of the model in Chamberlain (1980),
who considers the case where h(Xi) = ∑

T
t=1 X

′
itγt .

We provide a set of conditions under which the model parameters are iden-
tified. Let εit ≡Uit −Vi. Before proceeding, we introduce some notation. For a
generic random variable Xit , ∆Xt ≡ Xit −Xit−1 denotes the first-difference, and ⊥
indicates statistical independence. Since we consider panel data, it is implicitly
assumed that T ≥ 2.
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Assumption 1. The following conditions hold:
(i) E

[
∆Xit∆X

′
it

]
is of full rank for all t = 2,3, ...,T ;

(ii) For all i ∈ {1,2, ...,n} and t = 1,2, ...,T , εit |Xi
d
= εit ∼ Fε , where Fε is a

known strictly increasing function over R.

Condition (i) of Assumption 1 requires that Xit be time-varying. As a result,
one cannot include a constant term or time-invariant regressors to Xit , which is
the same for the standard linear panel data models. We note that time-invariant
regressors, including a constant term, can be included in h(·). We also point out
that one can use a different rank condition than Assumption 1(i). For example, it
is possible to consider a condition that E

[(
Xit − 1

T ∑
T
t=1 Xit

)(
Xit − 1

T ∑
T
t=1 Xit

)′]
is of full rank for all t. The role of Assumption 1(i) is to guarantee that Xit has
sufficient time variation. Condition (ii) of Assumption 1 specifies the distribu-
tion of εit and assumes that εit ⊥ Xi. This condition implicitly imposes a strict
exogeneity of Xi.

The following theorem shows that the model parameters are identified under
Assumption 1:

Theorem 1. Suppose that Assumption 1 hold. Then, θ is identified. Moreover,
h(·) is identified over the support of X.

3. ESTIMATION

The model we consider in this paper contains both finite and infinite dimen-
sional objects, and thus it is a semiparametric model. To estimate the model
parameters, we adopt the penalized sieve minimum distance (PSMD) estimation
approach proposed by Chen and Pouzo (2009). The methods of sieves provide a
flexible and tractable way to estimate semiparametric and nonparametric models
and are widely used in the literature (e.g., Song, 2015; Lee, 2022).

Let θ0 and h0 denote the true parameter value for θ and h, respectively. We
start with observing that the identification result in Theorem 1 implies that for
each i and t,

E
[
Yit −Fε

(
X

′
itθ +h(Xi)

)
|Xi

]
= 0 almost surely (3)

if and only if θ = θ0 and h = h0. This leads us to considering a PSMD approach
to estimating θ and h, based on the conditional moment restriction in (3). Let
Θ and H be the parameter spaces for θ and h, respectively. We denote the

parameter as α ≡
(

θ
′
,h
)′

and let A be the Cartesian product of Θ and H .
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Let Wit ≡
(

Yit ,X
′
it

)′

and ρt(Wi;α) ≡ Yit −Fε

(
X

′
itθ +h(Xi)

)
for each t =

1,2, ...,T . Then, we have T conditional moment restrictions and denote ρ(Wi)≡
[ρ1(Wi), ...,ρT (Wi)]

′
. We also define m(Xi;α) ≡ E [ρ(Wi;α)|Xi]. Let An be a

sieve space for the parameter space A . The PSMD estimator of α0, α̂n, is defined
as

α̂n ≡ arg inf
α∈An

{
1
n

n

∑
i

m̂n(Xi;α)
′ [

Σ̂n(Xi)
]−1

m̂n(Xi;α)+λnP̂n(h)

}
, (4)

where m̂n(x;α) is a consistent estimator of m(x;α), Σ̂n(x) is a consistent esti-
mator of positive definite matrix Σ(x), P̂n(h) ≥ 0 is a possibly random penalty
function, and λn is a positive real sequence such that λn ↓ 0.

To compute the PSMD estimator α̂n, it is required to obtain a consistent
estimator of m(x). In this paper, we use a series estimator of m(X;α), m̂n(X;α).2

Specifically, for each t = 1,2, ...,T , define

m̂t,n(X;α)≡ pJn(X)
′
(P

′
P)−

n

∑
i=1

pJn(Xi)ρt(Wi;α), (5)

where {p j(·)}∞
j=1 is a sequence of some basis functions,

pJn(x)≡ (p1(x), p2(x), ..., pJn(x))
′
,

P ≡
[
pJn(X), pJn(X), ..., pJn(X)

]′
,

and
(

P
′
P
)−

is the generalized inverse matrix of P
′
P. Then,

m̂n (X;α)≡ [m̂1,n(X;α), ..., m̂T,n(X;α)]
′
.

To define the parameter space for h, we introduce a class of functions. Let
f : D → R where D ⊆ Rdx for some integer dx ≥ 1. Let ω = (ω1, ...,ωdx) be a
dx-tuple of nonnegative integers, and define the differential operator as ∇ω f ≡

∂ |ω|

∂xω1
1 ∂xω2

2 ···∂x
ωdx
dx

f (x), where x = (x1,x2,...,xdx) ∈ D and |ω| ≡ ∑
dx
i=1 ωi. Let [p] be

the integer part of p ∈ R+, then a function f : X → R is called p-smooth if it is
[p] times continuously differentiable on X and for all ω such that |ω|= [p] and
for some ν ∈ (0,1] and constant c > 0, |∇ω f (x)−∇ω f (y)| ≤ c · ||x−y||νE for all
x,y ∈ X , where || · ||E is the Euclidean norm. Let C [p](X ) denote the space of

2One can refer to, for example, Li and Racine (2007) for details on series estimation.
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all [p] times continuously differentiable real-valued functions on X . A Hölder
ball with smoothness p is defined as follows:

Λ
p
C(X )≡ { f ∈ C [p](X ) : sup

|ω|≤[p]
sup
x∈X

|∇ω f (x)| ≤C,

sup
|ω|=[p]

sup
x,y∈X ,x ̸=y

|∇ω f (x)−∇ω f (y)|
||x− y||νE

≤C},

where C is a positive finite constant.
For a random variable X , let xmin and xmax denote the minimum and maxi-

mum values of X , respectively. For a given positive integer l, let t0, t1, ..., tl be
real numbers such that xmin = t0 < t1 < · · ·< tl+1 = xmax. Let Spl(r, l) denote the
space of polynomial splines with order r and l interior knots:

Spl(r, l)≡

{
r−1

∑
k=0

akxk +
l

∑
j=1

b j
[
max

{
x− t j,0

}]r−1
,x ∈ [xmin,xmax] : ak,b j ∈ R

}
.

Then, the complexity of Spl(r, l) is determined by kn ≡ r+ l.

4. ASYMPTOTIC THEORY

We develop the asymptotic theory for the PSMD estimator α̂n. The asymp-
totic theory presented in this paper relies on n → ∞ with T < ∞. Let || · ||∞
be the supremum norm on A that is defined as ||α||∞ ≡ ||θ ||E + ||h||∞, where
||h||∞ ≡ supx∈Supp(X) |h(x)|. We first show that the PSMD estimator is con-
sistent for α0 with respect to norm || · ||∞. The L2 norm on A is defined as
||α||2 ≡ ||θ ||E + ||h||2, where ||h||22 ≡

∫
h(x)2dFX(x). For a set A, let int(A)

denote the interior of A.

4.1. CONSISTENCY

To establish the consistency of the PSMD estimator α̂n, we impose the fol-
lowing conditions.

Assumption 2. (i) The data {Wi : i = 1,2, ...n} are i.i.d; (ii) The conditional
distribution of Y on X admits its conditional density function fY|X(y|x) that is
continuous in (y,x) and supy fY|X(y|x)< ∞ for all x ∈ Supp(X); (iii) Supp(X)

is a compact subset of RT ·dx with Lipschitz continuous boundary; (iv) the density
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function of X, fX(·), is bounded and bounded away from zero over Supp(X); (v)
there exists ε0 > 0 such that for all t = 1,2, ...,T and for all α ∈ A ,

Fε

(
X

′
t θ +h(X)

)
∈ [ε0,1− ε0]

almost surely; (vi) Fε is absolutely continuous with respect to the Lebesgue mea-
sure; (vii) The density function fε is continuous and uniformly bounded over R;
(viii) E

[
maxt≤T ||Xt ||2E

]
< ∞.

Assumption 3. (i) θ0 ∈ int(Θ), where Θ is a compact subset of Rdx; (ii) h0 ∈
H ≡ Λ

ph
ch (Supp(X)) with ph >

T dx
2 ; (iii) all first-order partial derivatives of h0

are uniformly bounded.

Assumption 4. (i) (p j(·))∞
j=1 is a sequence of polynomial spline (P-spline) func-

tions; (ii) the sieve space for H is

Hn ≡
{

hn(x) = pkn(x)
′
βn : ||hn||∞ ≤ ch

}
,

where kn is a positive non-decreasing integer sequence such that kn → ∞ and
kn = o(n); (iii) The eigenvalues of Qn ≡ E

[
pkn(X)pkn(X)

′
]

are bounded above
and away from zero uniformly over all n.

Assumption 5. For each α ∈ A , m(·;α) ∈ Λ
pm
cm (Supp(X)) with pm > T dx

2 .

Assumption 6. (i) Jn ≥ kn +dθ and Jn log(Jn) = o(n);
(ii) max j≤Jn E

[
||p j(X)||2E

]
<C < ∞ for some constant C.

Assumption 7. P̂n(h) = 0 for all n and h ∈ H .

Assumption 8. Pr
(
Σ(X) = Σ̂n(X) = IT

)
= 1 for all n.

Assumption 2 is standard. It is worth mentioning that condition (i) of As-
sumption 2 allows serial correlation of variables within individuals (i.e., it means
that Cov(Wit ,Wis) ̸= 0 for t,s ∈ {1,2, ...,T}). Condition (v) of Assumption 2 im-
plies that for each time period t = 1,2, ...,T , there are a group of individuals with
Yt = 1 and a group of individuals with Yt = 0.

Assumption 3 defines the parameter spaces for θ and h0. It also imposes
some smoothness of h0. Assumption 4 defines the sieve space for the parameter
space for h0, H . Since H is a Hölder ball and the support of X is compact, one
can approximate an element of H by using polynomial, trigonometric, or spline
sieve spaces.3 Since X ∈ RT dx , the P-spline sieve space can be constructed by a

3A detailed discussion on the choice of sieve spaces can be found in Chen (2007).
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tensor product of univariate P-spline sieve spaces. Condition (iii) of Assumption
4 is standard in the literature on series or sieve estimation.

Assumptions 5 and 6 define the parameter space for m and impose some
restriction on the sieve space that is used for approximating m(X;α). Condition
(i) of Assumption 6 can be interpreted as an order condition. Condition (ii) of
Assumption 6 is standard.

Assumption 7 implies that we do not use penalization. Under this assump-
tion, the PSMD estimator in (4) becomes a SMD estimator considered by Ai and
Chen (2003). Although we do not consider penalization, there are some popu-
lar non-trivial penalty functions, such as ||∇h||22 or ||∇2h||22. One can refer to,
for example, Chen and Pouzo (2009) and Chen and Pouzo (2012) for details on
non-trivial penalty functions for the PSMD estimation.

Assumption 8 specifies the weighting matrix. Using the identity matrix as
a weighting matrix, the PSMD estimator is not optimally weighted. We discuss
how to obtain (semiparametrically) efficient estimators of θ0 at the end of this
section.

The next theorem demonstrates that the PSMD estimator α̂n is consistent
with respect to the supremum norm:

Theorem 2. Suppose that Assumption 1 holds. If Assumptions 2–8 are satisfied,
then

||α̂n −α0||∞ = op(1).

4.2. CONVERGENCE RATES

Given that the sieve estimator α̂n is consistent for α0 with respect to || · ||A ,∞,
we consider a shrinking || · ||A ,∞ neighborhood around α0. For given small ε > 0
and large M > 0, we define

Aos ≡
{

α ∈ A : ||α −α0||A ,∞ ≤ ε, ||α||A ,∞ ≤ M
}
,

Aosn ≡ Aos ∩An.

Define
dm(X;α0)

dα
[α −α0]≡

dE [ρ(W;(1− t)α0 + tα|X]

dt

∣∣∣
t=0

as the pathwise derivative of m in the direction [α −α0] evaluated at α0. Let || · ||
denote a pseudo metric on Aos, where for any α1,α2 ∈ Aos,

||α1−α2|| ≡

√√√√E

[(
dm(X;α0)

dα
[α1 −α2]

)′

(Σ(X))−1
(

dm(X;α0)

dα
[α1 −α2]

)]
.
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For any positive real sequences {an} and {bn}, an ≲ bn means that there exist
a finite constant C > 0 and N ∈ N such that an ≤ Cbn for all n ≥ N. If an ≲ bn

and bn ≲ an, it is denoted by an ≍ bn.

Assumption 9. (i) Aos and Aosn are convex; (ii) E
[
||m(X;α)||2E

]
≍ ||α −α0||2

for all α ∈ Aosn; (iii) there exists δ0 > 0 such that for all t = 1,2, ...,T and for
any α ∈ Aos, fε(X

′
t θ +h(X))≥ δ0 almost surely.

Assumption 9 is mild, in particular when we focus on a shrinking neighbor-
hood of α0.

Let V be the closure of the linear span of Aos −{α0} under || · ||. For any
v1,v2 ∈ V, define an inner product as

< v1,v2 >≡ E

[(
dm(X;α0)

dα
[v1]

)′

(Σ(X))−1
(

dm(X;α0)

dα
[v2]

)]
.

Then,
(
V,< ·, ·>

)
is a Hilbert space. Note that

V= Rdβ ×W ,

where W ≡

w : E

∣∣∣∣∣
∣∣∣∣∣Σ(X)−

1
2

dm(X;α0)
dα

[w]

∣∣∣∣∣
∣∣∣∣∣
2

E

< ∞

. For a given component

θ j of θ , j = 1,2, ...,dx, let

Dw j(X)≡ dm(X;α0)

dθ j
− dm(X;α0)

dh
[w j]

and w∗
j ∈ W denote the solution to

inf
w j∈W

E
[
Dw j(X)

′
Σ(X)−1Dw j(X)

]
.

Let w∗ ≡
(

w∗
1,w

∗
2, ...,w

∗
dx

)
and Dw∗(X) = dm(X;α0)

dθ
− dm(X;α0)

dh [w∗]. Then, Dw∗(X)

is the vector of the efficient score functions (Bickel et al., 1993; Ai and Chen,
2003; Chen and Pouzo, 2009).

Assumption 10. E
[
Dw∗(X)

′
Σ(X)−1Dw∗(X)

]
is finite and positive definite.

Theorem 3. Suppose that Assumptions 1, and 2–10 hold. Then,

||ĥn −h0||2 = Op

(
max

{
δm,n,k

− ph
T dx

n

})
,

where δ 2
m,n = max

{
Jn
n ,J

− 2pm
T dx

n

}
.
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The L2-convergence rate of ĥn in Theorem 3 is a standard nonparametric
convergence rate. Since the infinite dimensional parameter h0 does not contain
any endogenous regressors (i.e., εt ⊥ X for all t = 1,2, ...,T ), the PSMD estima-
tor α̂n does not suffer from an ill-posed inverse problem (Carrasco et al., 2007;
Horowitz, 2014).

4.3. ASYMPTOTIC NORMALITY FOR THE FINITE DIMENSIONAL
PARAMETER

We establish the asymptotic normality of θ̂n. The convergence rate result in
Theorem 3 allows us to focus on shrinking neighborhoods of α0. Let

N0 ≡ {α ∈ Aos : ||α −α0||2 ≤ δ2,n, ||α −α0||∞ ≤ M}

for some M > 0 and Nn ≡ N0 ∩An.
Let λ ∈ Rdx −{0} and define f (α0) = λ

′
θ0. Under Assumption 10, there

exists v∗ ∈ V such that λ
′
(θ̂n − θ0) =< v∗, α̂n −α0 > by the Riesz represen-

tation theorem. Furthermore, one can show that v∗ ≡ (v∗
θ
,v∗h), where v∗

θ
=

E
[
Dw∗(X)

′
Σ(X)−1Dw∗(X)

]
and v∗h =−w∗× v∗

θ
.

For random variables X , Y , and Z, let Corr(X ,Y |Z) denote the conditional
correlation coefficient between X and Y given Z.

Assumption 11. For t,s ∈ {1,2, ...,T} such that t ̸= s, |Corr(Yt ,Ys|X)| ̸= 1 al-
most surely.

Assumption 12. fε is continuously differentiable and its derivative is uniformly
bounded.

Assumption 13. (i) v∗n is the projection of v∗ onto An −{α0} under || · || and
satisfies ||v∗n − v∗||= o

(
n−1/4

)
; (ii) δ2,n = o

(
n−1/4

)
.

Assumption 14. dm(·;α0)
dα

[v∗] ∈ Λ
pd
cd (Supp(X)) with J

− 2pd
T dx

n = o
(
n−1/2

)
.

Assumption 11, together with condition (iv) of Assumption 2, implies that
Var (ρ(W;α0)|X) is positive definite almost surely.

Assumption 12 strengthens the smoothness of Fε in the sense that Fε is twice
continuously differentiable.

Assumption 13 restricts the rates of kn and Jn. Condition (i) of Assumption
13 is required to eliminate the approximation error of the Riesz representer v∗.
It is usually satisfied if v∗ belongs to a class of smooth functions (e.g., Hölder
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spaces, Sobolev space) and the sieve space for A , An, does well approximate
an element of the class of functions. Condition (ii) of Assumption 13 is satisfied
with a proper choice on kn and Jn under Assumptions 3 and 4.

Assumption 14 requires that the pathwise derivative of m(·;α) with respect
to α evaluated at α0 in the direction v∗ be in a class of smooth functions. The
latter condition is required to eliminate the approximation error of dm(·;α0)

dα
[v∗]

when using a series estimator of dm(·;α0)
dα

[v∗].
We now provide the asymptotic normality of the PSMD estimator of θ0:

Theorem 4. Suppose that Assumptions 1, and 2–14 hold. Then,

√
n
(
θ̂n −θ0

) d→ N (0,V ) ,

where

V ≡
(
E
[
Dw∗(X)

′
Dw∗(X)

]−1
E
[
Dw∗(X)

′
Σ0(X)Dw∗(X)

]
E
[
Dw∗(X)

′
Dw∗(X)

]−1
)
.

4.4. WEIGHTED BOOTSTRAP

The asymptotic variance provided in Theorem 4 can be consistently esti-
mated in a similar way to Ai and Chen (2003). However, it may be costly to
estimate the asymptotic variance, in particular when the dimension of θ is large.
We propose a weighted bootstrap procedure that can consistently estimate the
asymptotic variance V .

Assumption 15. Let {Bi}n
i=1 be an i.i.d. sample of positive random variable B

such that E[B] = 1 and Var(B) = b0 < ∞ that is independent of (Wi)
n
i=1.

One can use a multinomial random variable or exponential random variable
to draw bootstrap weights. Define

m̂n,B(X;α)≡ pJn(X)
′
(

P
′
P
)− n

∑
i

pJn(Xi)ρ(Wi;α) ·Bi

and

α̂
∗
n ≡ arg inf

α∈An

{
1
n

n

∑
i

m̂n,B(Xi;α)
′ [

Σ̂n(Xi)
]−1

m̂n,B(Xi;α)+λnP̂n(h)

}
.

The following theorem establishes the validity of the weighted bootstrap proce-
dure:
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Theorem 5. Suppose that Assumptions 1, and 2–15 hold. Then, conditional on
the data {Wi : i = 1,2, ...,n},

√
n
b0

(
θ̂ ∗

n − θ̂n
)

has the same limiting distribution

to that of
√

n
(
θ̂n −θ0

)
.

4.5. SEMIPARAMETRIC EFFICIENCY

We now consider the semiparametric efficiency of the PSMD estimator of
θ0. Let Σ0(X) ≡ Var(ρ(W;α0)|X) and Σ̂0,n(X) be a consistent estimator of
Σ0(X). Let q0(y,x,α0) be the true joint density function of (Y,X) and consider
p(y,x,θ ,ξ )≡ q0(y,x,θ ,h0+ξ (h−h0)) for a fixed h∈H and some small ξ > 0
such that h0 +ξ (h−h0) ∈ H . We impose the following conditions:

Assumption 16. (i) Pr
(
Σ̂n(X) = Σ̂0,n(X)

)
= 1 for all n; (ii) supx∈Supp(X)

∣∣∣Σ̂0,n(x)−

Σ0(x)
∣∣∣= Op (δΣ,n) with δΣ,n = o

(
n−1/4

)
.

Assumption 17. For any h ∈ H , p(y,x,θ ,ξ ) is smooth in the sense of Newey
(1990).

Assumption 16 requires that there exist a consistent estimator of the optimal
weighting matrix Σ0. Recall that the diagonal elements of Σ0(X) are the condi-
tional variances of ρt(W;α0)’s given X. The off-diagonal elements of Σ0(X) are
the conditional covariances between ρt(W;α0) and ρs(W;α0), with t ̸= s, given
X. Recall that

Var (ρt(W;α0)|X) = Fε

(
X

′
t θ0 +h0(X)

)
·
(

1−Fε

(
X

′
t θ0 +h0(X)

))
(6)

and

Cov(ρt(W;α0),ρs(W;α0)|X) =E [YtYS|X]

−Fε

(
X

′
t θ0 +h0(X)

)
Fε

(
X

′
sθ0 +h0(X)

) (7)

for t ̸= s. One can easily obtain a consistent estimator of Var (ρt(W;α0)|X)
by replacing the unknown parameters in (6) with their consistent PSMD esti-
mators. To consistently estimator Cov(ρt(W;α0),ρs(W;α0)|X), it is needed to
consistently estimate E [YtYS|X]. There are many nonparametric approaches to
estimating the conditional expectation function, including kernel regression and
series estimation. Condition (ii) of Assumption 16 can hold with those nonpara-
metric estimation approaches with an appropriate choice of tuning parameters.

Assumption 17 is a sufficient condition for the PSMD estimator of θ0 to
achieve the semiparametric efficiency bound.
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Theorem 6. Suppose that Assumptions 1, and 2–7, 9–14, and 16 hold. Then,
√

n
(
θ̂n −θ0

) d→ N (0,V0) ,

where V0 ≡ E
[
Dw∗(X)

′
Σ0(X)−1Dw∗(X)

]−1
.

If Assumption 17 additionally holds, then the PSMD estimator of θ0 is semi-
parametrically efficient.

5. MONTE CARLO SIMULATION

We conduct a small Monte Carlo simulation study to investigate the finite
sample performance of the PSMD estimator α̂n. Let Φ(·) denote the standard
normal distribution function and consider the following data generating process
(DGP) with two time periods (T = 2):

Yt = 1(Xtθ0 + c ≥Ut) ,

for each t = 1,2, where θ0 = 1, c = Φ

(
∑

T
t=1 Xt
T

)
+V with V ∼ N (0,0.2), Ut ∼

N(0,0.8), Cov(Ut ,Us) = 0.1 for all t,s∈ {1,2, ...,T} such that t ̸= s. We generate

(X∗
1 ,X

∗
2 )

′
from BV N

((
0
0

)
,

(
1 0.1

0.1 1

))
, and they are independent of U1, U2,

and V . Then, we construct X1 ≡ 2Φ(X∗
1 )−1 and X2 ≡ 2Φ(X∗

2 )−1 so that X1and
X2 have a bounded support. As a result, the model can be rewritten as follows:
for each t = 1,2,

Yt = 1
(

Xtθ0 +Φ

(
X1 +X2

2

)
≥ εt

)
,

where εt |X ∼ N (0,1). Note that h0(x) = Φ
(X1+X2

2

)
. The sample size is set to be

500, and all Monte Carlo simulation results are obtained from 500 iterations.
We focus on the performance of θ̂n, the PSMD estimator of θ0. As the per-

formance measure, we consider the bias, standard deviation (S.D), and the root
mean squared error (RMSE). The sieve space for H is P-spline sieve spaces.
We consider several values for the order (r) and number of interior knots (l).4

Table 1 presents the Monte Carlo simulation results. We find that the PSMD
estimator of θ0 performs well as the bias is negligible and the magnitude of the
standard deviation is reasonable. The performance of the PSMD estimator is
not sensitive to the choice of the order or P-spline functions and the number of
interior knots.

4While it is challenging to choose r and l in a data-dependent way, one can use some infor-
mation criteria (e.g., AIC, BIC) to choose r and/or l, as in Chen and Liao (2014).
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Table 1: Monte Carlo Simulation for θ0 (n = 500)

(r, l) Bias S.D RMSE
(3,3) 0.0533 0.1343 0.1445
(3,4) 0.0408 0.1397 0.1456
(4,3) 0.0459 0.1337 0.1413
(4,4) 0.0465 0.1288 0.1370

Note: The number of simulations is set to be 500.

6. CONCLUSION

In this paper, we consider binary choice models with panel data. The model
is a semiparametric extension of the model of Chamberlain (1980), who consid-
ered a CRE approach for binary choice models with panel data. Our model is
different from that of Chamberlain (1980) in the sense that we do not specify the
conditional expectation function of the time-invariant unobserved heterogene-
ity on time-varying regressors. In doing so, we alleviate the issue about model
misspecification. The model parameters are identified under mind conditions.
Then, we propose the PSMD approach to estimate the model. We establish the
asymptotic theory for the PSMD estimator and show the bootstrap validity. Our
PSMD estimator of the finite dimensional parameter is semiparametrically effi-
cient once we use the optimal weighting matrix. The optimal weighting matrix is
unknown, but it can be easily estimated in practice. The Monte Carlo simulation
results confirm that our PSMD estimator performs well in finite samples, as it
has small bias and standard deviation with a relatively small sample size.

While the semiparametric model proposed in this paper may reduce the pos-
sibility of model misspecification, we point out that our model relies on a dis-
tributional assumption on the latent error term. The distributional assumption
is imposed for tractability of the model, and is not driven by some economic
theory. There are several studies in the literature that relax such distributional
assumptions in various contexts (e.g., Chen et al., 2006; Bierens, 2014; Han and
Vytlacil, 2017; Han and Lee, 2019). It would be interesting to consider identifi-
cation and estimation of a model where the distribution of the latent error term
is unknown. We leave this important and interesting topic for future research.
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A. MATHEMATICAL PROOF

For any positive real sequences {an} and {bn}, an ≲ bn means that there exist
a finite constant C > 0 and N ∈ N such that an ≤ Cbn for all n ≥ N. If an ≲ bn

and bn ≲ an, it is denoted by an ≍ bn.

A.1. PROOF OF THEOREM 1

Proof. Note that

Pr(Yt = 1|X) = Fεt |X(X
′
t θ +h(X))

= Fε

(
X

′
t θ +h(X)

)
.

Since Fε is strictly increasing over R, there exists the inverse map F−1
ε (·). There-

fore,
F−1

ε (Pr(Yt = 1|X)) = X
′
t θ +h(X), (8)

and we have

F−1
ε (Pr(Yt = 1|X))−F−1

ε (Pr(Yt−1 = 1|X)) = ∆X
′
t θ . (9)

Multiplying ∆Xt to the both sides of equation (9) and taking expectation, we
obtain that

E
[
∆Xt

(
F−1

ε (Pr(Yt = 1|X))−F−1
ε (Pr(Yt−1 = 1|X))

)]
= E

[
∆Xt∆X

′
t

]
θ .

Under Assumption 1, E
[
∆Xt∆X

′
t

]
is invertible. Therefore,

θ =
(
E
[
∆Xt∆X

′
t

])−1
E
[
∆Xt

(
F−1

ε (Pr(Yt = 1|X))−F−1
ε (Pr(Yt−1 = 1|X))

)]
,

implying that θ is identified. The identification of h is from equation (8) and
identification of θ .

A.2. PROOF OF THEOREM 2

Lemma 1. Suppose that Assumptions 2–5 hold. Then, Assumption 2.6 in Chen
and Pouzo (2009) is satisfied.
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Proof. We verify Assumptions 2.7 and 2.8 in Chen and Pouzo (2009). Assump-
tion 2.7 in Chen and Pouzo (2009) is directly imposed by Assumptions 2, 3, and
4. Note that

sup
α∈An

sup
x∈Supp(X)

Var (ρ(W;α)|X = x)≤ 2

since

Var (ρt(W;α)|X = x)

=E
[
ρt(W;α)2|X = x

]
=E
[
Y 2

t |X = x
]
+2E[Yt |X = x] ·Fε

(
x
′
tθ +h(x)

)
+
(

Fε

(
x
′
tθ +h(x)

))2

≤
(

Fε

(
x
′
tθ0 +h0(x)

)
+Fε

(
x
′
tθ +h(x)

))2

≤2

by the fact that Fε

(
X

′
t θ +h(X)

)
< 1 almost surely for all t = 1,2, ...,T under

Assumption 2.
Let ξ0n ≡ supx∈Supp(X) ||pJn(x)||E . Under Assumption 4, ξ0n = O

(
J1/2

n

)
by

Newey (1997, p.151). By Assumption 5 and Newey (1997), there exists (π∗
n )n

such that ||m(·;α)− pJn(·)′π∗
n ||22 = O

(
J−2pm/T dx

n

)
.

By Remark 2.1 in Chen and Pouzo (2009), Assumption 2.6 in Chen and

Pouzo (2009) is satisfied with δ 2
m,n = max

{
Jn
n ,J

− 2pm
T dx

n

}
.

Proof of the theorem

Proof. We verify the conditions of Lemma 2.1 in Chen and Pouzo (2009). Under
Assumption 1, the moment conditions in (3) holds if and only if θ = θ0 and
h = h0. Therefore, Assumption 2.1 in Chen and Pouzo (2009) is satisfied under
Assumptions 1, 2, and 3. Since h0 ∈ Λ

ph
ch (Supp(X)) and the sieve space for H

is the space of polynomial splines by Assumptions 3 and 4, there exists (β ∗
n )n

such that ||h0 − pkn(·)′β ∗
n ||∞ = O

(
k−ph/T ·dx

n

)
= o(1). In addition, for each t =

1,2, ...,T , mt(X;α) =Fε

(
X

′
t θ0 +h0(X)

)
−Fε

(
X

′
t θ +h(X)

)
is continuous in α;

and therefore, under Assumption 8, E
[
m(X;α)

′ ·Σ(X)−1m(X;α)
]

is continuous
at α0 under || · ||∞. As a result, Assumptions 2.2 and 2.3 in Chen and Pouzo
(2009) are satisfied. Since P̂n(h) = P(h) = 0 for all h ∈ H , Assumption 2.4 in
Chen and Pouzo (2009) is met. Assumption 2.5 in Chen and Pouzo (2009) is
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satisfied by Assumption 8. By Lemma 1, Assumption 2.6 in Chen and Pouzo
(2009) holds. In all, it follows from Lemma 2.1 in Chen and Pouzo (2009) that
||α̂n −α0||∞ = op(1).

A.3. PROOF OF THEOREM 3

Proof. We use Lemma 2.3 in Chen and Pouzo (2009) to prove Theorem 3. Con-
dition (i) of Assumption 2.9 in Chen and Pouzo (2009) is directly imposed by
Assumption 9. Condition (ii) of Assumption 2.9 in Chen and Pouzo (2009) is
implied by Lemma 1.

Note that under Assumption 8,

||α −α0||2

=E

[(
dm(X;α0)

dα
[α −α0]

)′

Σ(X)−1
(

dm(X;α0)

dα
[α −α0]

)]

=E

[
∑
t≤T

fε(X
′
t θ0 +h0(X))2(X

′
t (θ −θ0)+(h−h0))

2

]

≲E

[
(θ −θ0)

′

(
∑
t≤T

fε(X
′
t θ0 +h0(X))2XtX

′
t

)
(θ −θ0)+(h−h0)

2
∑
t≤T

fε(X
′
t θ0 +h0(X))2

]
≲||α −α0||22
≤||α −α0||2∞,

where the inequality in the third line holds by the cr-inequality, and the inequality
in the fourth line holds by Assumption 2(vii) and Assumption 2(viii). This leads
to that condition (iii) of Assumption 2.9 in Chen and Pouzo (2009) is satisfied by
Assumption 2. Therefore, Assumption 2.9 in Chen and Pouzo (2009) holds. It
also implies that condition (i) of Assumption 2.10 in Chen and Pouzo (2009) is
satisfied. Condition (ii) of Assumption 2.10 in Chen and Pouzo (2009) is directly
imposed by Assumption 10. In all, Lemma 2.3 in Chen and Pouzo (2009) yields
that

||ĥn −h0||= Op

(
max

{
δm,n,k

− ph
T dx

n

})
.

Since || · || ≍ || · ||2 on Aos by Assumptions 2 and 9, this completes the proof.
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A.4. PROOF OF THEOREM 4

Proof. We verify the sufficient conditions of Theorem 3.1 in Chen and Pouzo
(2009). Observe that for any α, α̃ ∈ An such that ||α − α̃||2 ≤ δ

E
[
||ρ(W ;α)−ρ(W ; α̃)||2E |X

]
≤ ∑

t

∣∣∣Fε

(
X

′
t θ +h(X)

)
−Fε

(
X

′
t θ̃ + h̃(X)

)∣∣∣2
≲ ∑

t

∣∣∣X ′
t (θ − θ̃)+h(X)− h̃(X)

∣∣∣2
≲ ∑

t

(
||Xt ||2E · ||θ − θ̃ ||2E + |h(X)− h̃(X)|2

)
≤ T

(
max
t≤T

||Xt ||2E +1
)
· ||α − α̃||22.

By Assumption 2, condition (i) of Assumption 3.1 in Chen and Pouzo (2009) is
satisfied with r = 2, κ = 1, and b(x)≡ T

(
maxt≤T ||xt ||2E +1

)
. Since |ρt(W)| ≤ 2

for all t = 1,2, ...,T , condition (ii) of Assumption 3.1 in Chen and Pouzo (2009)
is satisfied. Since δ2,n = o

(
n−1/4

)
by condition (ii) of Assumption 13 and

δ2,n ≍ δn, we have δ 2
n · δ 2

2,n ≍ δ 4
2,n = o

(
n−1
)
, which implies condition (iii) of

Assumption 3.1 in Chen and Pouzo (2009).
Condition (i) of Assumption 3.2 in Chen and Pouzo (2009) is directly im-

posed by Assumption 3. Note that since Var (ρt(W;α0)|X) is bounded away
from zero, Var (ρ(W;α0)|X) is positive definite by Assumptions 2 and 11. In
addition, Assumption 13 implies condition (iii) of Assumption 3.2 in Chen and
Pouzo (2009).

Assumption 3.3 in Chen and Pouzo (2009) is implied by Assumptions 8 and
13. Under Assumptions 4 and 14, it follows that

E
[∣∣∣∣∣∣dm̃(X;α0)

dα
[v∗]− dm(X;α0)

dα
[v∗]
∣∣∣∣∣∣2

E

]
= O

(
J
− 2pd

T dx
n

)

by Newey (1997). Therefore, condition (i) of Assumption 3.4 in Chen and Pouzo
(2009) is satisfied by Assumptions 4 and 14. Since Σ(X) = IT by Assumption 8,
condition (ii) of Assumption 3.4 in Chen and Pouzo (2009) is also met. Condi-
tion (b) of Assumption 3.5 in Chen and Pouzo (2009) is implied by Assumption
3.

By Assumption 12, m(X;α) is twice pathwise differentiable in α ∈ N0n.
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Note that for each t = 1,2, ...,T ,

dmt(X;α0)

dα
[v] =− fε

(
X

′
t θ0 +h0(X)

)(
X

′
t vθ + vh

)
,

d2mt(X;α0)

dαdα
[v,v] =− f

′
ε

(
X

′
t θ0 +h0(X)

)(
X

′
t vθ + vh

)2
,

where f
′
ε(x)≡

d fε (x)
dx . Under Assumptions 2, 3, 4, and 12,

E

[
sup

α∈N0n

∣∣∣d2m(X;α)

dαdα
[v∗n,v

∗
n]
∣∣∣]≲ E

[
max
t≤T

(
X

′
t v∗θ ,n + v∗h,n

)2
]
< ∞,

and thus, condition (i) of Assumption 3.6 in Chen and Pouzo (2009) is satisfied.
For any α ∈ N0n,∣∣∣∣∣∣dm(X;α)

dα
[v∗n]−

dm(X;α0)

dα
[v∗n]
∣∣∣∣∣∣2

E
≲

(
T

∑
t

(
X

′
t v∗θ ,n + v∗h,n

)2
)
· (α −α0)

2

since f
′
ε(·) is bounded over R. Therefore,

E

[
sup

α∈N0n

∣∣∣∣∣∣dm(X;α)

dα
[v∗n]−

dm(X;α0)

dα
[v∗n]
∣∣∣∣∣∣2

E

]

≲ E

[(
T

∑
t

(
X

′
t v∗θ ,n + v∗h,n

)2
)]

·δ 2
2,n

= o
(

n−1/2
)

by Assumption 13, which implies condition (ii) of Assumption 3.6 in Chen and
Pouzo (2009). Finally, since ||α −α0||2 ≤ δ2,n and ||ᾱ −α0||2 ≤ δ2,n for any
α ∈ N0n and ᾱ ∈ N0 by the definitions of N0n and N0, it can be shown that

E

[(
dm(X;α0)

dα
[v∗]
)′

Σ(X)−1 ·
(

dm(X; ᾱ)

dα
[ᾱ −α0]−

dm(X;α)

dα
[α −α0]

)]

≤

√
E
[∣∣∣∣∣∣dm(X;α0)

dα
[v∗]
∣∣∣∣∣∣2

E

]
·

√
E
[∣∣∣∣∣∣(dm(X; ᾱ)

dα
[ᾱ −α0]−

dm(X;α)

dα
[α −α0]

)∣∣∣∣∣∣2
E

]

≲

√
E
[∣∣∣∣∣∣d2m(X; α̃)

dαdα
[ᾱ −α0,α −α0]

∣∣∣∣∣∣2
E
+
∣∣∣∣∣∣d2m(X; α̇)

dαdα
[α −α0,α −α0]

∣∣∣∣∣∣2
E

]
≲δ

2
2,n,
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where α̃ lies between ᾱ and α0, and α̇ lies between α and α0. Therefore, by
condition (ii) of Assumption 13, condition (iii) of Assumption 3.6 in Chen and
Pouzo (2009) is met.

In all, it follows from Theorem 3.1 in Chen and Pouzo (2009) that

√
nλ

′ (
θ̂n −θ0

) d→ N
(

0,λ
′
V λ

)
.

By the Cramer-Wold device, we conclude that
√

n
(
θ̂n −θ0

) d→ N (0,V ).

A.5. PROOF OF THEOREM 5

Proof. This is a direct consequence of Theorem 3.2 in Chen and Pouzo (2009).

A.6. PROOF OF THEOREM 6

Proof. Assumption 16, together with Assumption 13, is sufficient for condition
(ii) of Assumption 3.3 in Chen and Pouzo (2009) (i.e., δn × δΣ,n = o

(
n−1/2

)
).

Applying Theorem 3.1 in Chen and Pouzo (2009) with the weighting matrix Σ̂0,n
establishes the asymptotic normality result in the theorem. The semiparametric
efficiency follows from Theorem 6.1 in Ai and Chen (2003).
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