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1. INTRODUCTION

This paper establishes the existence of Bayes Nash equilibrium for the first-
price auction in the setup where some bidders know more about each other than
about others. Specifically, bidders are partitioned into subsets called “knowledge
groups” such that bidders in the same knowledge group are assumed to know
each other’s types (or values) precisely while they only know the value distri-
bution of bidders in other groups. This information structure modifies the tradi-
tional setup with independent and private values (IPV)—where all bidders only
know the value distribution of others—to capture situations where some bidders
do not have uncertainty about each other’s values due, for instance, to certain in-
teractions prior to the auction. Some practical examples include a procurement
auction contested by domestic firms and foreign firms in which domestic firms
know much about each other’s technological capabilities or revenue/cost struc-
tures, or auctions for government assets, such as mineral, timber harvesting, and
spectrum rights, in which bidders often consist of incumbent firms with a long
history of operation in the industry and relative newcomers in the area.

In this setup, Kim and Che (2004) study the standard auctions—first-price
auction and second-price auction—to show that the second-price auction per-
forms better than the first-price auction in terms of both efficiency and revenue.
Their results are based on the existence of equilibrium in the first-price auction,
which is not formally established in the paper, however. One may wonder if the
existence follows simply from applying the standard equilibrium analysis to the
current setup, since it can be seen as a special case of IPV setup with correlated
values where some values are more correlated than others. This is not the case,
however, since bidders in the current setup, in particular those in the knowledge
group consisting of multiples bidders, hold multidimensional private informa-
tion, that is, values of others in the same knowledge group as well as his own
value. The standard analysis is not suited for handling the equilibrium bidding
strategies that depend on such multidimensional information. In fact, the analy-
sis is made more difficult due to the arbitrary partition structure assumed by the
current paper, which renders the auction generally asymmetric since the group
sizes may be different.

The current paper adapts the general existence result in Reny (1999) to es-
tablish that under the above setup, the first-price auction admits the existence
of undominated Bayes Nash equilibrium (which may be mixed). Reny (1999)
proves the existence of Nash equilibrium in games with discontinuous payoffs
that typically arise in the auction games due to tie-braking rules. He provides
mild conditions on payoff discontinuities that admit the existence of Nsah equi-
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librium and establishes, as an application, the existence of (Bayes) Nash equilib-
rium for the first-price auction—more precisely, discriminatory price auction—
where bidders have multidimensional private information associated with their
multi-unit demands. The current paper establishes the existence for the first-
price auction in another novel setup with multidimensional private information
that arises due to the asymmetry of bidders’ knowledge about rivals’ types. This
paper also makes a contribution to the line of literatures that are devoted to prov-
ing the existence of equilibrium in the first-price auction, such as Maskin and
Riley (2000) and Lebrun (1999).

2. MODEL

A seller has a single indivisible good to sell to n ≥ 2 risk neutral bidders.1

The seller is assumed to put no value on the good. Bidders have independent
private values. Specifically, bidder i’s valuation vi is drawn from the interval
[0,1], following a common distribution function F(·) whose density function
f (·) is bounded away from zero. F is assumed to be common knowledge. Letting
N denote the set of all bidders, the profile of bidders’ valuations, v := (vi)i∈N ∈
V := [0,1]n, has the joint density fN(v) := ∏i∈N f (vi).2

We depart from standard IPV models (represented by Myerson (1981) and
Riley and Samuelson (1981) by allowing some bidders to know about each
other’s valuation. To express this idea formally, we impose a partition structure
G on the set N, where G is the set of disjoint groups (or disjoint sets) with each
group consisting of bidders whose realized valuations are common knowledge
among themselves. That is, for each group G ∈ G , the profile of its members’
valuations, vG := (vi)i∈G, is common knowledge among those bidders.3 Note
that every realization of vG is commonly known to bidders in G while only the
distribution of vG is known to bidders in the other groups. A bidder is referred
to as a group leader if he has the highest valuation in the group. For later use,
we let vG\i := (v j) j∈G\i ∈V G\i and v−G := (v j) j∈N\G ∈V−G denote the profile of
valuations for group G except for bidder i and the valuation profile for all bidders
except for group G, respectively. The joint density for the vector vG is denoted
by fG(vG) := ∏i∈G f (vi), and the joint densities for the vector vG\i and v−G are
similarly denoted by fG\i and f−G, respectively. Also, the partition structure is

1The description of the model here closely follows that in Kim and Che (2004).
2Throughout the paper, bold face letters are used to denote vectors.
3The partition structure is critical for the analysis in this paper. Whether the existence result

holds in non-partitional structure is beyond the scope of the current paper.
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assumed to be common knowledge and exogenous (i.e., fixed prior to the re-
alization of v). It is assumed that the information structure described so far is
common knowledge among bidders.

Throughout the paper, we focus on the first-price auction with zero reserve
price. The assumption of zero reserve price is made purely for simplicity, and all
subsequent results extend in the natural way (i.e., with no change in the compar-
isons) if a binding reserve price is introduced. In the first-price auction format,
all bidders tender sealed bids simultaneously, and the highest bidder wins and
pays his bid. A tie-breaking rule is important in guaranteeing existence of an
equilibrium in this format. For instance, in a standard Bertrand game played by
two firms with heterogeneous costs, a Nash equilibrium exists only when the ties
are broken in favor of the lower-cost firm. For the same reason, we assume that
(1) a tie is broken in favor of a bidder with a higher valuation if there are multiple
highest bidders; and that (2) if there are multiple highest bidders with the same
valuation, then the object is assigned randomly with equal probability among
those bidders. While this tie-breaking rule is endogenous, it can be implemented
by performing an auxiliary second-price auction with bidders who submitted the
highest bid in first-price auction.4 In both games, we look for a Nash equilibrium
in weakly undominated strategies.

Our model includes as special cases two extreme partition structures. In
the one case, every set in the partition is a singleton, so every bidder knows
only his valuation. This is the standard assumption made in the auction litera-
ture. The other case has one grand set in the partition, which means that bid-
ders know all other bidders’ types. The resulting game is precisely the Bertrand
game. We do not impose any restriction on the partition structure. Naturally, dif-
ferent groups may contain different numbers of bidders, so the partition may
be asymmetric. For instance, if there are four bidders with N = {1,2,3,4},
our model encompasses three different possibilities than the two extreme ones:
two groups of two (e.g., {{1,2},{3,4}}), one group of three and one group
of one (e.g., {{1,2,3},{4}}), two groups of one and one group of two (e.g.,
{{1},{2},{3,4}}).

4See Maskin and Riley (2000) for a similar assumption about tie breaking. Further, our tie-
breaking rule can be justified as producing a limiting equilibrium of a game in which bidders must
bid in a discrete space and a random tie-breaking rule is used.
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3. EXISTENCE OF EQUILIBRIUM FOR FIRST-PRICE AUCTION

We first establish several necessary conditions for an equilibrium, given any
arbitrary knowledge partition. These conditions will constitute partial charac-
terizations of equilibrium, which will be used for establishing existence of the
equilibrium and for comparison with the second-price auction.

To this end, fix an equilibrium (whose existence will be shown later). Fix
any bidder i ∈ G and let m(i) ∈ argmax j∈G\i v j be the highest valuation bidder,
excluding bidder i, in the same group, and let vm(i) be his valuation. Let bi(vG)
and bi(vG) respectively denote an arbitrary selection of bidder i’s equilibrium
bids and their infimum, given the valuation profile, vG, of group G. Since we
restrict the equilibrium strategies to be undominated, we must have bi(vG)≤ vi.
The following lemma shows that bi(vG)≥ vm(i) whenever vi > vm(i).

Lemma 1. If vi > vm(i), then, in any equilibrium of the first-price auction, bi(vG)≥
vm(i) and i beats all bidders in G.

Proof. See the Appendix.

This lemma implies that the allocation is efficient within each group in any
equilibrium. It also implies that competition is effectively among the group lead-
ers, so attention can be restricted to group leaders when we search for an equilib-
rium. The next lemma shows that the equilibrium distributions of their bids have
no mass points.5 It refers to yG(b), which denotes the probability of outbidding
all bidders outside a group G with a bid of b in an arbitrary equilibrium.

Lemma 2. In any equilibrium of a first-price auction, yG(b) is continuous in b
for every G ∈ G .

Proof. See the Appendix.

We next show that any equilibrium in a first-price auction is essentially pure.

5While this result would be standard in the auction literature, our informational structure makes
it nontrivial and warrants a separate proof. The standard proof is based on the argument along
the following line: if a bidder puts mass on a bid b, then there exists an interval (b− ε,b) to
which everyone else assigns probability 0, which then provides a profitable deviation from b (see
Fudenberg and Tirole (1991 pp.223-225). This argument does not work in our model since, by
Lemma 1, a group leader is constrained by the second-highest valuation in his group, so bids will
be placed on every interval with some probability. Our proof basically amounts to showing that if
a positive mass is put on b by a group leader, the opponent group leaders will submit bids between
(b− ε,b) with such a small probability that it pays the former leader to move the mass point.
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Lemma 3. For each G ∈ G , the equilibrium bid, bi(vG), is unique for almost
every vG such that vi > vm(i).

Proof. See the Appendix.

We are now in a position to address the existence issue. Two features of
the model make the standard existence result inapplicable in our setting. First,
each bidder observes the entire profile of valuations of his group members, so
this creates a multi-dimensional signal problem. Second, since we assume an
arbitrary knowledge partition, the environment is generally asymmetric. Our
proof builds on the existence result of Reny (1999). A sketch of the proof is
presented below, with its detailed version contained in the appendix.

Proposition 4. There exists a pure-strategy equilibrium in which each bidder,
say i, employs a bidding strategy, bi(vG) that is nondecreasing and takes a value
in [vm(i),vi] when vi ≥ vm(i), or else bi(vG) = vi.

Proof Sketch. (A detailed proof is collected in the Appendix.) We consider a
hypothetical first-price auction game in which there is one player representing
each group. Specifically, for each group I ∈ G in the original game, we assign a
single player with a signal, vI = (vi)i∈I ∈ [0,1]|I|. That player realizes the highest
valuation of vI , upon winning the game (and zero when losing) and chooses a bid
βI(vI) ∈ [v2

I ,v
1
I ], where vr

I denotes the rth order statistic of vector vI , and v2
I := 0

if |I|= 1. We then follow the arguments of Reny (1999) to prove that this hypo-
thetical game has a pure-strategy equilibrium, β

∗, in which each (hypothetical)
player is choosing a nondecreasing bid function β ∗I (vI) ∈ [v2

I ,v
1
I ].

Given the equilibrium, β
∗, of the hypothetical game, we can construct the

equilibrium of the original game as follows: Each bidder i∈ I bids min{vi,β
∗
I (vI)}

for a value realization vI of the group I. To see that this forms an equilibrium of
the original game, suppose first that i is not a group leader. Then, given our en-
dogenous tie-breaking rule and β ∗I (vI)≥ vi, bidder i has no incentive to deviate.
If i is a group leader, his equilibrium bid is β ∗I (vI) ≤ vi. Given the behavior of
other bidders in his group, bidder i cannot benefit from bidding below v2

I . Given
this constraint, bidding β ∗I (vI) is optimal since β ∗I is an equilibrium strategy in
the hypothetical game.

Given the private value specification, a group leader’s equilibrium bid is
likely to depend only on his valuation and the second-highest valuation in the
group. In fact, it is likely that there exists an unconstrained bidding strategy,
BI(v), for group I such that a leader of group I bids max{BI(v1

I ),v
2
I }, given the
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first and second-highest valuations, v1
I and v2

I , respectively. The unconditional
bid BI(v1

I ) is thus the optimal bid that a group leader with value v1
I would have

submitted if there were no competition from the group members. When BI(v1
I ) is

smaller than the second highest value, the leader raises his bid up to v2
I , i.e. just

enough to beat the highest group rival. Notice here the role of the endogenous
tie-breaking rule that awards the object to the group leader when his bid is tied
with the highest group rival. The following example illustrates the existence of
(pure strategy) Bayes Nash equilibrium that involves the unconditional bidding
strategy.

Example 5. Suppose that there are four bidders in k equal-sized groups: G =
{{1,2},{3,4}}. Suppose also that each bidder draws his valuation uniformly
from [0,1]. It is then a (symmetric) equilibrium for each bidder to bid

min{vi,max{2
3

vi,vm(i)}}

when his valuation is vi and that of the other bidder in the group is vm(i). In
this equilibrium, a group leader with valuation vi adopts an unconstrained bid
B(vi) =

2
3 vi, unless it is less than the valuation of the other bidder in his group.6

That is, a leader behaves much as in a standard first-price auction (i.e., singleton
partitions), except that he behaves like a Bertrand player against his within-
group rivals. Note also that the unconstrained bid, B(vi) =

2
3 vi, adopted by

the group leader is the same as the equilibrium bid that would be employed in a
standard first-price auction game (i.e., singleton knowledge partitions) with only
three players. Essentially, the group leader acts as if he faces no competition
from the lower valuation bidder in his group as long as 2

3 vi ≥ vm(i). Clearly
this will reduce the competition, all else equal. On the other hand, whenever
2
3 vi < vm(i), the second highest valuation acts as a constraint, thus raising the
intensity of competition. How these two conflicting effects will affect the revenue
will be the subject of the next section.

6That this is an equilibrium can be seen as follows. Since the two groups are symmetric,

yG(b) = Prob{vG| max{B(vi),vm(i)} ≤ b, where i = argmax j∈G v j}

= Prob{vG| vi ≤ B−1(b) and vm(i) ≤ b, where i = argmax j∈G v j}

= 2F(3b/2)F(b)−F2(b) = 2bmax{1,3b/2}−b2.

A group leader with valuation vi maximizes yG(b)(vi− b) subject to the constraint b ≥ vm(i). It
can be easily verified that with yG(b) given above, yG(b)(vi−b) is increasing with b for b < 2

3 vi

and decreasing for b > 2
3 vi, which implies max{ 2

3 vi,vm(i)} is indeed an equilibrium.
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APPENDIX

Proof of Lemma 1. Bidder i must receive a strictly positive (expected) payoff
in equilibrium (since he can bid slightly higher than vm(i), which will win with
positive probability). If bi(vG)< vm(i), then bidder m(i) must also earn a strictly
positive payoff in equilibrium. For both bidders to earn positive payoffs, their
infimum must coincide and each must put a mass point there. But then it pays ei-
ther one of them to raise the mass point slightly, which will increase the probabil-
ity of winning discontinuously while lowering his payoff conditional on winning
only slightly. Hence, we have a contradiction, so we must have bi(vG) ≥ vm(i).
The last statement follows directly from the first statement and our tie-breaking
rule.

Proof of Lemma 2. Suppose to the contrary that yG(b) jumps up at b for some
group G. This can only occur if the leader of another group, say G̃ 6=G, puts mass
on b. We must have only one such group since, otherwise, one of leaders of those
groups would want to bid slightly above b to increase the winning probability
discontinuously. Therefore, yG̃ is continuous at b. Since the leader of G̃ bids
b for a positive measure of type profiles of G̃ bidders, there must exist such a
profile, vG̃, with v2

G̃ < b ≤ v1
G̃, where v1

G̃ and v2
G̃ are the first and second order

statistics of vG̃. The leader of G̃ can ensure himself a positive surplus given vG̃,
so we must also have yG̃(b)> 0.

In equilibrium, the group G̃ leader should have no incentive to deviate by
bidding below b given vG̃, which requires that, for ε > 0,

[v1
G̃− (b− ε)]yG̃(b− ε)≤ [v1

G̃−b]yG̃(b),

or

[v1
G̃−b]

yG̃(b)− yG̃(b− ε)

ε
≥ yG̃(b− ε). (A.1)

For sufficiently small ε > 0, yG̃(b− ε) must be strictly positive since yG̃(·) is
continuous at b and yG̃(b)> 0. Hence, to prove that such a deviation is profitable,
it suffices to show

limsupε↓0
yG̃(b)− yG̃(b− ε)

ε
≤ 0. (A.2)

We prove this below. Consider again any group G 6= G̃. If G consists of a
single bidder, then for small enough ε , he would assign probability 0 to the inter-
val [b−ε,b). Hence, no single-bidder group can contribute to yG̃(b)−yG̃(b−ε),
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for a sufficiently small ε , and we are done if all groups other than G̃ have single
bidders. Assume therefore that there exists a group G 6= G̃, which contains more
than one bidder. We show below that even such a group chooses almost zero
probability in the interval [b− ε,b) for a small ε > 0.

To prove this, we find an upper bound for yG̃(b)− yG̃(b− ε) for a small ε ,
which is accomplished by identifying a set of vG for which a leader of G should
not make a bid between b and b− ε . To begin, note that since yG jumps up at
b as mentioned above, we have p := limb′↑b yG(b′) < yG(b). Let r := yG(b)

p̂ > 1,
and take any K1 >

1
r−1 . Then, for any ε > 0, a leader of G with v1

G > b+K1ε

strictly prefers b to any b̃ ∈ [b− ε,b) since

[v1
G−b]yG(b)

[v1
G− b̃]yG(b̃)

≥
(

v1
G−b

v1
G− b̃

)
r ≥

(
v1

G−b
v1

G−b+ ε

)
r > 1,

where the numerator and denominator are the payoffs from the bidding b and b̃,
respectively, the first inequality follows from yG(b̃) ≤ p̂, the second inequality
follows from b̃ ≥ b− ε , and the last inequality follows from v1

G > b+K1ε and
from K1 >

1
r−1 . It follows that a bid b̃ ∈ [b−ε,b) can only be made by the group

G leader if v1
G ∈ [b− ε,b+K1ε].

Next, set K2 := K1 + 3 for K1 chosen above and assume that the group G
leader has v1

G ∈ [b− ε,b+K1ε] — the only possibility that causes the leader to
bid in [b−ε,b). Suppose that the second-highest rival in the group has v2

G ≤ b−
K2ε . Then, the group G leader will face no within-group challenge by bidding
b−K2 < b− ε . In fact, for a sufficiently small ε > 0, a group G leader with
v1

G ∈ [b− ε,b+K1ε] strictly prefers b−K2 to any bid b̃ ∈ [b− ε,b), since

[v1
G− b̃]yG(b̃)

[v1
G− (b−K2ε)]yG(b−K2ε)

≤ (K1 +1)yG(b̃)
(K1 +2)yG(b−K2ε)

< 1,

where the numerator and the denominator represent the payoffs from bidding
b̃ ∈ [b− ε,b) and b−K2ε , respectively, and the first inequality holds (for ε < 1
say) since v1

G ∈ [b− ε,b+K1ε] and b̃ ≥ b− ε , and the second inequality holds
since yG(·) is continuous at b. It follows that, for a sufficiently small ε > 0, the
group G leader will never bid in [b− ε,b) if v2

G ≤ b−K2ε .
Combining the two arguments, we conclude that a group G bidder will bid in

[b− ε,b) only if v1
G ∈ [b− ε,b+K1ε] and v2

G ∈ (b−K2ε,b). The probability of
the joint event is no greater than

(|G|
2

)
(F(b+K1ε)−F(b−K2ε))2. Therefore,

yG̃(b)− yG̃(b− ε)≤∑ G6=G̃
|G|≥2

(
|G|
2

)
(F(b+K1ε)−F(b−K2ε))2 . (A.3)



10 INFORMATION ABOUT RIVALS’ TYPES IN FIRST-PRICE AUCTION

Hence, we obtain

limsupε↓0
yG̃(b)− yG̃(b− ε)

ε

≤ limε↓0 ∑ G 6=G̃
|G|≥2

(
|G|
2

)
(F(b+K1ε)−F(b−K2ε))2

ε

= limε↓0 ∑ G 6=G̃
|G|≥2

2
(
|G|
2

)
(F(b+K1ε)−F(b−K2ε))(K1 f (b+K1ε)+K2 f (b−K2ε))

= 0,

where the inequality follows from (A.3), and the first equality follows from the
L’hopital’s rule.

The last string of inequalities implies that it pays the group G̃ leader to move
the mass point down, which yields a contradiction to the conjectured equilibrium.
Hence, we conclude that yG(·) is continuous for all G ∈ G .

Proof of Lemma 3. Let bG(vG) be an arbitrary selection from the support of a
group G leader’s (possibly mixed) equilibrium bids when the valuation profile of
group G members is vG. Consider two valuation profiles vG and vG with vG ≤ vG

and v1
G < v1

G, where v1
G (resp. v1

G) refers to the group G leader’s valuation, given
profile vG (resp. vG). Let b = bG(vG) and b = bG(vG), and then we show that
b ≤ b; i.e., an arbitrary equilibrium bidding strategy is nondecreasing. Since
b ≥ vm(i) ≥ vm(i), we are done if b ≤ vm(i). Hence, assume that b > vm(i). This
means that, given the profile of vG, the group G leader could beat all of his
within group rivals by bidding b, so his winning probability would be simply
that of outbidding other group leaders, yG(b). Likewise, given the profile of vG,
the group G leader would face the winning probability of yG(b) when bidding
b. Then, incentive compatibility requires yG(b)[v1

G−b]≥ yG(b)[v1
G−b] and we

have yG(b)[v1
G−b]≥ yG(b)[v1

G−b]. Combining last two inequalities gives

(v1
G− v1

G)(yG(b)− yG(b))≥ 0. (A.4)

Suppose, to the contrary, that b > b. Then, since yG(·) is nondecreasing, we must
have yG(b) = yG(b) > 0. But this cannot hold since the group G leader would
strictly prefer to bid b when vG is realized. We therefore conclude that an arbi-
trary selection from the equilibrium strategies must be non-decreasing. Because
there can be only countably many jumps in a non-decreasing and bounded cor-
respondence, the equilibrium bidding strategy of i is almost pure when he is a
leader.
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Proof of Proposition 4. Fix an arbitrary partition structure and suppose that there
are K groups in that partition structure. As outlined in the text, we first consider
a hypothetical game in which there are only K players, one for each group. In
this hypothetical game, player I ∈ G observes as private information vI = (vi)i∈I ,
the valuation profile of bidders in group I in the original game, and bids

βI(vI) ∈ [v2
I ,v

1
I ], (A.5)

where vr
I denotes the rth order statistic of the vector vI , and v2

I = 0 if |I| = 1.
All bidders bid simultaneously, and the good is allocated according to the first-
price auction rule. Ties are broken according to our endogenous sharing rule.
Formally, given the profile of bids submitted, b = (b1, · · · ,bK), let W (b,v) =
argmaxJ{v1

J |J ∈ argmaxH∈G bH} denote the set of highest-valuation bidders (in
the hypothetical game) who submitted the highest bid. Then, the payoff of player
I is described as:

UI(b;v) :=

{
1

|W (b,v)|(v
1
I −bI) if I ∈W (b,v)

0 otherwise,
(A.6)

when the players observed v and bid b. Notice that each player only realizes the
highest valuation of his group. If the bidders play a strategy profile β = (βI)I∈G ,
then bidder I receives payoff: uI(β ) :=

∫
UI(β (v);v) fN(v)dv.

Given this description of hypothetical game, we turn to existence of the Nash
equilibrium in this game. Reny (1999) provides us with conditions for the exis-
tence of a mixed strategy equilibrium (see Corollary 5.2 of Reny (1999)). First of
all, as Reny (1999) did in the case of multi-unit pay-your-bid auction, we study a
restricted version of this hypothetical game where bid functions are restricted to
be nondecreasing. This latter restriction ensures that the strategy space is com-
pact if endowed with the pointwise convergence topology, thereby making the
set of mixed strategies compact with the weak∗ topology. An equilibrium of the
restricted hypothetical game will be shown to be an equilibrium of the hypo-
thetical game later when we show that there exists a best response satisfying the
monotonicity constraint when all other bidders play the restricted equilibrium
strategies.

Given the compactness, better-reply security (as defined in Reny (1999))
is sufficient to establish the existence of a mixed strategy equilibrium of the
restricted hypothetical game. We prove that its sufficient conditions, reciprocal
upper semicontinuity and payoff security, hold for the restricted hypothetical
game.7

7A standard first-price auction does not satisfy reciprocal upper semicontinuity, given a random
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Step 1: The payoffs of the players the restricted hypothetical game satisfy recip-
rocal upper semicontinuity in mixed strategies.

Proof. We prove reciprocal upper semicontinuity in the players’ pure strategies,
which is sufficient for reciprocal uppersemicontinuity in the mixed strategies.
The former is in turn proven by showing that u(β ) = ∑I uI(β ) is upper semi-
continuous in β . To this end, we first show that U(b;v) := ∑I UI(b;v) is upper
semicontinuous in b for every v. For a v, pick an arbitrary b and a sequence
bt = (bt

I)I∈G converging to b. It suffices to show that for any given ε > 0, there
exists T such that U(b;v)+ ε ≥U(bt ;v) for all t ≥ T . Let b = bI and v = v1

I for
I ∈W (b,v). Then, U(b;v) = v− b. For a sufficiently large t, we must have (i)
W (bt ,v)⊂ argmaxJ∈G bJ , and that (ii) bt

I ≥ b−ε for every I. It then follows that

U(bt ;v) = ∑I∈W (bt
,v)

1
|W (bt ,v)|

(v1
I −bt

I)

≤ ∑I∈W (bt
,v)

1
|W (bt ,v)|

(v−bt
I)

≤ v−b+ ε

= U(b;v)+ ε,

where the first inequality follows from (i) since v=maxJ′{v1
J′ | J′ ∈ argmaxJ∈G bJ}≥

v1
I for any I ∈W (bt ,v)⊂ argmaxJ∈G bJ , and the second inequality follows from

(ii).
To show the upper semicontinuity of u, consider a sequence β

t converging
to β pointwise. Then,

limsupt→∞ u(β t) = limsupt→∞

∫
U(β t(v),v) fN(v)dv

≤
∫

limsupt→∞ U(β t(v),v) fN(v)dv

≤
∫

U(β (v),v) fN(v)dv = u(β ),

where the first inequality follows from Fatou’s Lemma (see Ash 1972, p.295, for
instance) and the second inequality from the upper semicontinuity of U .

Step 2: The restricted hypothetical game is payoff secure in mixed strategies.

tie-breaking rule (see Reny (1999), p.1040). Reciprocal upper semicontinuity holds here because
of our endogenous sharing rule, which allocates the good efficiently among tying bidders.



JINWOO KIM 13

Proof. Let mI denote the bidder I’s mixed strategy and m = (mI)I∈G its profile
for all players. Note that mI is a mixing over non-decreasing pure strategy bid
functions satisfying (A.5). Then, our game is payoff secure if for every m and
every ε > 0, each player i has a strategy mI such that uI(mI,m′−I) ≥ uI(m)− ε

for all m′−I in some open neighborhood of m−I . This part of the proof follows
precisely the same argument as in Reny (1999). The key step is to observe that,
given m−I and ε , a player I can achieve a payoff within ε/2 of his supremum
payoff by adopting a bidding strategy that is strictly increasing in v1

I .8 Since
the latter strategy does not put any mass on a single bid, uI(mI, ·) is continuous
in m−I . Thus, we can take a neighborhood of m−I where uI(mI, ·) is at least
uI(m)− ε .

Given that the two conditions are met, Corollary 5.2 of Reny (1999) implies
that there exists a mixed strategy equilibrium, denoted m∗, whose support con-
sists of non-decreasing bid functions. Now, we complete the proof by showing
that I has a best response which is non-decreasing, which implies that m∗I must
be a best response overall.

Step 3: When all other players play their equilibrium strategies of the restricted
hypothetical game, player I has a best response strategy which is non-decreasing.

Proof. As before, let yI(b) denote player I’s probability of winning when bid-
ding b. By Lemma 2,9 the best response set MI(vI) := argmaxv2

I≤b≤v1
I
yI(b)[v1

I −
b] is nonempty. Further, since yI(·) nondecreasing, the objective function sat-
isfies the single crossing property in (b,vI). By Theorem 4 of Milgrom and
Shannon (1994), then one can select a best response function, βI(vI) that is non-
decreasing in vI .

This last step implies that m∗ is an equilibrium of the (unrestricted) hypo-
thetical game. Furthermore, Lemma 3 guarantees that m∗ is almost pure. Hence,
there exists a pure strategy equilibrium β

∗. Given the equilibrium, β
∗, of the

8To see this point, suppose hypothetically that player I wins the auction whenever he makes
the highest bid even if a tie occurs at that bid. Given this presumption, I’s payoff is upper semi-
continuous in his bid, so the maximum is well defined and is attained by a bidding function which
is nondecreasing in vi

I . The resulting maximum must constitute an upper bound for I’s payoff
(since he will not always win at a tie in the true game). This payoff can be arbitrarily closely
approximated by modifying the bid function slightly to raise the bid at a tie and to avoid constant
bids.

9While Lemma 2 establishes the continuity for the original game, the same proof applies to
the restricted hypothetical game.
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hypothetical game, one can construct the equilibrium strategies for the original
game, as described in the main text.
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