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Abstract
We study the role of returns to scale of production function in contests be-

tween groups. Two types of group contests are considered, the weakest-link
group contest and the best-shot group contest. In each group contest, we investi-
gate the existence and characteristics of the Nash equilibrium of the game, given
different returns to scale of the production function for the contest. We find that,
in both group contests, the constant returns and decreasing returns to scale bring
the same nature of equilibrium. On the other hand, the increasing returns to scale
causes the nonconcavity of players’ payoff functions, complicates the analysis
of the game, and makes changes in equilibrium properties.
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1. INTRODUCTION

Contests among groups are ubiquitous around us. Inter-party competition to
win votes, rivalries between interest groups to secure group profits, technology
competition between research groups to get a patent, sporting contests between
teams to win a medal, and music contests between girl/boy groups to gain pop-
ularity, just to name a few. These situations where groups compete for the prize
are referred to as group contests in economics, and the study on group contests
has been growing.

The seminal work of Katz et al. (1990) considers the group contest in
which players within a group are symmetric, each group’s winning probability is
stochastically determined by the efforts of all the groups in the contest through
a lottery contest success function (Tullock, 1980), and each group’s effort is de-
fined as the sum of the group members’ efforts, i.e., the perfect-substitute group
impact function is used. The impact function is a function that translates the
efforts of the group members within a group into the group effort (Wärneryd,
1988). The group contest of Katz et al. (1990) is extended by many researchers
in various ways. Among them, Baik (1993, 2008) extends it to the case in which
players within each group are not symmetric, i.e., they may have different valu-
ations on the prize, and have the constant returns to scale of production function
for the contest. In this setting, he finds that, at equilibrium, the highest-valuation
players in each group expend efforts and the others free ride. In the same setting
of Baik (1993, 2008), Epstein and Mealem (2009) adopt the decreasing returns
to scale of the production function for the contest, and obtain different results.
At the equilibrium of Epstein and Mealem (2009), the free riding does not occur
and the players make more efforts in proportion to their valuations. On the con-
trary to Epstein and Mealem (2009), Lee (2015) takes on the increasing returns
to scale of the production function, and finds another type of equilibrium where
the players’ efforts decrease in proportion to their valuations.

Note that the abovementioned works study the perfect-substitute contests
between groups. That is, they use the perfect-substitute group impact function,
assuming that the efforts of the individual members within a group are perfectly
interchangeable. On the other hand, many researchers employ different types of
group impact functions and study various group contests: Lee (2012), Kolmar
and Rommeswinkel (2013), Chowdhury et al. (2013), Barbieri et al. (2014), Lee
and Song (2015), Chowdhury and Topolyan (2016), Chowdhury et al. (2016),
Chowdhury and Topolyan (2016), and Lee and Lee (2016). Among them, the
works of Lee (2012) and Chowdhury et al. (2013) are closely related to the cur-
rent paper. Lee (2012) considers the group contest in which each member in a
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group has his own essential role in producing the group performance, i.e., group
members’ efforts within the group are perfect complements. For example, the
competition among research teams each of which consists of different fields of
experts applies to this case. He uses the weakest-link group impact function and
assumes the constant returns to scale of the production function in the contest,
which implies that players have the constant marginal costs for exerting their ef-
forts in the contest. In such a setting, he finds a multiplicity of Nash equilibria in
the weakest-link contest. On the other hand, Chowdhury et al. (2013) employs
the best-shot impact function in the contest in which the performance of a group
is determined as the maximum of the group members’ performances within the
group. The competition among Research Joint Ventures, each of which consists
of several firms sharing the results of a research project, has a feature of the
best-shot contest. If one of the firms in a research joint venture makes the great
technological innovation, then it strengthens the overall competitiveness of that
research joint venture while other innovations made by the other firms are di-
luted. Assuming the constant returns to scale of the production function in the
contest, they shows that there may exist the equilibrium in which the highest-
valuation players in a group free ride on the low-valuation player in the group
as well as the typical equilibrium in which only highest-valuation players in the
groups exert efforts and the others free ride. Note that both of Lee (2012) and
Chowdhury (2013) assume the constant returns to scale of production function,
which implies that the players face constant marginal costs for exerting efforts
in the contest. Then the natural question to ask is what is the role of the other
returns to scale of the production function (decreasing and increasing returns to
scale) in the weakest-link and best-shot group contest? To put it differently, what
would happen to the equilibrium in the weakest-link and best-shot contest if the
experts in the research teams and the firms in the research joint ventures face in-
creasing marginal costs (decreasing returns to scale of the production function)
or decreasing marginal costs (increasing returns to scale of the production func-
tion) for investing efforts? This question has not yet been investigated, and we
try to answer it in this paper. This is the motivation and the contribution of the
paper. Table 1 summarizes the fit of the current study in the related literature.

Our main findings are as follows. Unlike the perfect-substitute group con-
test in which different types of equilibrium appears accordingly to the constant
returns and decreasing returns to scale of the production function, each weakest-
link and best-shot group contest has the same nature of equilibrium regardless
of whether its production function exhibits constant or decreasing returns. That
is, the equilibrium properties is invariant to the constant and decreasing returns.
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Table 1: The fit of the current study

Impact function Perfect-Substitute Weakest-Link Best-Shot
Returns to Scale

Constant Returns Baik (2008) Lee (2012) Chowdhury
et al. (2013)

Decreasing Returns Epstein and Mealem Section 3.1.2 Section 3.2.2
(2009) in current study in current study

Increasing Returns Lee (2015) Section 3.1.3 Section 3.2.3
in current study in current study

However, the increasing returns to scale of the production function makes a dif-
ference in both the weakest-link and the best-shot contest. First, the increasing
returns to scale causes the nonconcavity of the players’ payoff functions in the
contest, and complexifies the payoff-maximization problems for players. There-
fore, our close attention must be drawn when we try to figure out the equilibrium
in the weakest-link and best-shot contests with the increasing returns to scale
of the production function. Second, it makes changes in equilibrium properties.
There always exist multiple pure-strategy Nash equilibria in the weakest-link
contest with the constant and decreasing returns. However, a unique equilibrium
may exist in case of the increasing returns to scale. And, in the best-shot contest
with the constant and decreasing returns, there always exists the equilibrium in
which only highest-valuation player in a group expends effort and the others in
the group free rides on him, and there may exist the other equilibrium in which
the highest-valuation player free rides on the others in the group. On the con-
trary, in case of the increasing returns to scale, the latter equilibrium may exist
even in the case where the former does not exist at all. Besides, we find that there
may not exist any pure-strategy Nash equilibrium. We believe that these findings
add relevant knowledge/understanding to the literature on group contests.

The paper proceeds as follows. In Section 2, our model is presented and we
analyze it in Section 3. Finally, Section 4 concludes.

2. THE MODEL

We set up our model on the basis of the model of Lee (2015), while using
the same terminology, terms, notations, assumptions, etc. n groups contest a
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group-specific public-good prize, where n≥ 2. Each group i consists of mi risk-
neutral players who exert effort to win the prize, where mi ≥ 2. Player k in group
i puts his valuation vik on the prize and the valuations of players are assumed as
follows.
Assumption 1. vi1 ≥ vi2 ≥ ·· · ≥ vimi > 0 ∀ i = 1, . . . ,n.

Player k in group i exerts effort and his non-negative effort level is denoted
by eik. Through an production function for the contest f (·), the effort of player k
in group i is transformed into his individual performance in the contest. Denoting
the performance of player k in group i by xik, we define it as follows:

xik := f (eik) = eα
ik (1)

where α > 0 and it represents returns to scale for the production function. When
α = 1, the production function exhibits constant returns to scale (CRS). α less
than 1 exhibits decreasing returns to scale (DRS), while α greater than 1 exhibits
increasing returns to scale (IRS).

All the players have a common linear effort-cost function: c(eik) = eik.
Individual performances of the players within each group are mapped onto

the performance of that group through a group impact function F(·). Denoting
the performance of group i by Xi, we define it as follows:

Xi := F(xi1, . . . ,ximi) = min{xi1, . . . ,ximi} or max{xi1, . . . ,ximi} . (2)

If F(·) = min{xi1, . . . ,ximi}, our group contest becomes the weakest-link
group contest studied in Lee (2012). And, if F(·) = max{xi1, . . . ,ximi}, it be-
comes the best-shot group contest studied in Chowdhury et al. (2013).1

Group i wins the prize with probability pi. The winning probability of each
group depends on the performance of that group and the other groups’ perfor-
mances as well:

pi(X1, . . . ,Xn), (3)

which satisfies the following regularity conditions for the contest success func-
tion.
Assumption 2. 0 ≤ pi ≤ 1, ∑

n
i=1 pi = 1, pi(0, . . . ,0) = 1

n , ∂ pi
∂Xi
≥ 0, ∂ 2 pi

∂X2
i
≤ 0,

∂ pi
∂X j
≤ 0, ∂ 2 pi

∂X2
j
≥ 0, ∂ pi

∂Xi
> 0 and ∂ 2 pi

∂X2
i
< 0 for some X j > 0, ∂ pi

∂X j
< 0 and ∂ 2 pi

∂X2
j
> 0

for Xi > 0, where i 6= j.

1If F(·) = ∑
mi
l=1 xil , the contest becomes the perfect-substitute group contest.
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Assumption 2 indicates that the win probability of group i increases in the
performance of that group and decreases in performances of the other groups
at a decreasing rate. It also means that the group that makes the greatest per-
formance in the contest does not surely win the prize as long as there exist
at least two groups making positive group performances. The group with the
greatest performance just has the highest probability of winning. That is, the
continuous contest success function defined by Assumption 2 is imperfectly dis-
criminating (Hillman and Riley, 1989). This type of contest success function
has been widely employed in various fields such as economics of advertising
(Schmalensee, 1978), rent-seeking (Tullock, 1980; Nizan, 1994), political cam-
paigns (Baron, 1994), litigation (Hirshleifer and Osborne, 2001; Robson and
Skaperdas, 2008), sports economics (Szymanski, 2003), and contests in general
(Konrad, 2009), to name a few. The reason is because it satisfies set of intuitive
axioms and properties necessary for the probabilistic choice function in con-
tests (Skaperdas, 1996) and also provides analytical convenience. Especially,
the ratio-form (Tullock-form) contest success function, one of the continuous
imperfectly discriminating contest success functions, is the most widely used in
sporting contests. Using data on the 4 major American sports leagues, Peeters
(2011) estimated the ratio-form contest success function and found that the data
fit well with it. On the other hand, the perfectly discriminating contest success
function follows the all-pay auction rule, i.e., the group making the largest group
performance in the contest wins the prize with probability one (Moldovanu and
Sela, 2001). This type of contest success function is extremely sensitive to the
group performances and it could be considered as the the extreme (limit) case
for the imperfectly discriminating contest success function (Hilman and Riley,
1989).

The expected payoff for player k in group i is denoted by πik. Then the payoff
function for player k in group i is defined as follows:

πik = vik pi(X1, ...,Xn)− eik. (4)

All the players in the contest choose their effort levels independently and
simultaneously. All of the above is common knowledge among the players, and
we employ Nash equilibrium as our solution concept.

3. ANALYSIS OF THE MODEL

Depending on the types of the impact function and the production function,
i.e., whether F(·) = min (weakest-link) or max (best-shot) and whether α = 1
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(CRS), α < 1 (DRS), or α > 1 (IRS), there appear 6 different types of group
contests. We analyze each of them in the following subsections.

3.1. F(·) = MIN: THE WEAKEST-LINK GROUP CONTEST

3.1.1 α = 1: the CRS production function

When α = 1, group i’s performance Xi is defined as min{ei1, . . . ,eimi}. Player
k in group i chooses eik that maximizes his expected payoff

πik = vik pi(Xi,X−i)− eik, (5)

where X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn).
To derive the best response of player k in group i to the other players’ effort

levels, we use the “imaginary” best response of the player. Let eb
ik denote the

imaginary best response of player k in group i, which means the best response of
player k in group i when he is a unique player within the group. Namely, eb

ik is
the non-negative effort level that maximizes

π
b
ik = vik pi(eik,X−i)− eik, (6)

given X−i. Thus, the interior maximizer eb
ik satisfies the following first-order

condition for maximizing πb
ik:

vik
∂ pi(eik,X−i)

∂eik
−1 = 0. (7)

The second-order condition for maximizing is satisfied from Assumption 2.
By Assumption 1, the first-order condition (7) means that

eb
i1(X−i)≥ eb

i2(X−i)≥ ·· · ≥ eb
imi
(X−i) for all X−i. (8)

Let eB
ik denote the best response of player k in group i to effort levels of all

the other players in the contest. By using the imaginary best response eb
ik and the

nature of the weakest-link impact (minimum) function, we obtain the following
best response of player k in group i:

eB
ik(e−ik,X−i) =

{
eb

ik(X−i) for eb
ik(X−i)< min{eil}mi

l=1(6=k)
min{eil}mi

l=1(6=k) for eb
ik(X−i)≥min{eil}mi

l=1(6=k),
(9)

where e−ik = (ei1, . . . ,eik−1,eik+1, . . . ,eimi).
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Finally, from the best responses of the players in (9), we obtain the pure-
strategy Nash equilibrium of the game. Let a (∑n

j=1 m j)−tuple vector of ef-
fort levels (e∗11, . . . ,e

∗
1m1

, · · · ,e∗n1, . . . ,e
∗
nmn

) represent the Nash equilibrium of the
game. The proposition below describes the equilibrium, which is found by Lee
(2012).

Proposition in Lee (2012) The pure-strategy Nash equilibrium in the weakest-
link group contest with the CRS production function has the following properties:

(a) The players in each group play the same strategy: e∗i1 = e∗i2 = · · ·= e∗imi
(≡

e∗i ).

(b) There exist multiple pure-strategy Nash equilibria: e∗i can be any value
that satisfies 0 ≤ e∗i ≤ eb

imi
(X∗−i) ∀ i = 1, . . . ,n, where X∗−i = (X∗1 , . . . ,

X∗i−1,X
∗
i+1, . . . ,X

∗
n ) and X∗i = F(e∗i1

α , . . . ,e∗imi
α).

(c) Among the multiple equilibria, there is a unique coalition-proof Nash
equilibrium. At that equilibrium, the players in each group play the strat-
egy: e∗i = eb

imi
(X∗−i).

The proposition says that all the players within each group choose an equal
effort level in equilibrium, and the lowest-valuation player in each group plays a
decisive role in determining the Nash equilibria of the game, because, given the
players’ efforts in the other groups, his willingness to exert effort is the smallest
within the group. There is no free riding problem in equilibrium.

3.1.2 α < 1: the DRS production function

Group i’s performance Xi is now defined as min
{

eα
i1, . . . ,e

α
imi

}
. Player k in

group i chooses eik that maximizes his expected payoff

πik = vik pi(Xi,X−i)− eik. (10)

As in the previous section, we use the imaginary best response eb
ik in order

to derive the best response of player k in group i. eb
ik is the effort level that

maximizes

π
b
ik = vik pi(eα

ik,X−i)− eik. (11)

Thus, the interior eb
ik satisfies the following first-order condition for maxi-

mizing πb
ik:

vik
∂ pi

∂ (eα
ik)

α

e1−α

ik

−1 = 0. (12)
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The second-order condition for the maximization is as follows:

vikα

(
∂ 2 pi

∂ (eα
ik)

2
α

e2(1−α)
ik

− (1−α)
∂ pi

∂ (eα
ik)

1
e2−α

ik

)
< 0, (13)

which is satisfied for any arbitrary value of eik > 0 due to Assumption 2 and α

less than 1. And, by Assumption 1, the first-order condition (12) implies that

eb
i1(X−i)≥ eb

i2(X−i)≥ ·· · ≥ eb
imi
(X−i) for all X−i. (14)

By using the imaginary best response eb
ik and the nature of the weakest-link

impact function, the best response of player k in group i is given as follows:

eB
ik(e−ik,X−i) =

{
eb

ik(X−i) for eb
ik(X−i)< min{eil}mi

l=1(6=k)
min{eil}mi

l=1(6=k) for eb
ik(X−i)≥min{eil}mi

l=1(6=k).
(15)

Finally, from the best responses of the players, we obtain the pure-strategy
Nash equilibrium of the game. Let a (∑n

j=1 m j)−tuple vector of effort levels
(e∗11, . . . ,e

∗
1m1

, · · · ,e∗n1, . . . ,e
∗
nmn

) represent a Nash equilibrium. Proposition 1 de-
scribes the equilibrium.

Proposition 1. The pure-strategy Nash equilibrium in the weakest-link group
contest with the DRS production function has the following properties:

(a) The players in each group play the same strategy: e∗i1 = e∗i2 = · · ·= e∗imi
(≡

e∗i ).

(b) There exist multiple pure-strategy Nash equilibria: e∗i can be any value
that satisfies 0≤ e∗i ≤ eb

imi
(X∗−i) ∀ i = 1, . . . ,n.

(c) Among the multiple equilibria, there is a unique coalition-proof Nash
equilibrium. At that equilibrium, the players in each group play the strat-
egy: e∗i = eb

imi
(X∗−i).

(d) The equilibrium structure and characteristics are the same as those in the
weakest-link group contest with the CRS production function.

The decreasing returns to scale of the production function gives us the same
structure of imaginary best responses, and consequently the same structure of
best responses of the players as those obtained in case of the constant returns
to scale. As a result, the decreasing returns to scale of the production function
has no effect on changing the nature of the Nash equilibrium of the weakest-link
group contest with the constant returns to scale.



72 GROUP CONTESTS AND TECHNOLOGIES

3.1.3 α > 1: the IRS production function

Group i’s performance Xi is defined as min
{

eα
i1, . . . ,e

α
imi

}
. Player k in group

i chooses eik that maximizes his expected payoff

πik = vik pi(Xi,X−i)− eik. (16)

As in the previous sections, we first try using the imaginary best-responses
of the players in each group to derive the best responses of them and find the
equilibrium of the game. Given X−i, the imaginary best response of player k in
group i, eb

ik, is the effort level that maximizes

π
b
ik = vik pi(eα

ik,X−i)− eik. (17)

Then the interior maximizer eb
ik satisfies the following first-order condition

for maximizing πb
ik:

vik
∂ pi

∂ (eα
ik)

αeα−1
ik −1 = 0. (18)

The second-order condition for the maximization is as follows:

vikα

(
∂ 2 pi

∂ (eα
ik)

2 αe2(α−1)
ik +(α−1)

∂ pi

∂ (eα
ik)

eα−2
ik

)
< 0, (19)

which is not necessarily satisfied for any arbitrary value of eik > 0, because the
sign of the first term within the bracket is negative, while the sign of the second
one is positive. This implies that eb

ik satisfying both the first-order condition
(18) and the second-order condition (19) does not guarantee player k in group
i the global maximum of πb

ik. I.e., the solution eb
ik for the first-order condition

is surely the local maximizer, but not necessarily the global one. Therefore,
we need to check if the interior maximizer eb

ik obtained from the first-order and
second-order conditions indeed gives the player the highest expected payoff or
not, by comparing the payoff given by the interior maximizer eb

ik and the payoff
given by the boundary solution, 0. For this reason, when the production function
exhibits increasing returns to scale (α > 1), the imaginary best responses of the
players derived from the first-order and second-order conditions may lead us to
an erroneous way of constructing the best responses of the players and finding
the Nash equilibrium of the game. In order to understand this more specifically
and see the existence and structure of the Nash equilibrium in case of the IRS
of the production function, we consider the following simple weakest-link group
contest with α > 1 as an example.
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Two symmetric groups compete against each other, each group consists of
two members, and the members within each group have the valuations on the
prize, k ≥ 1 and 1, respectively. I.e., n = 2, m1 = m2 = 2, v11 = v21 = k (≥ 1),
and v12 = v22 = 1. We use the Tullock-form contest success function (CSF) for
our analysis:

pi(X1,X2) =
Xi

X1 +X2
=

min
{

eα
i1,e

α
i2

}
min

{
eα

11,e
α
12

}
+min

{
eα

21,e
α
22

} for i = 1,2.

In the weakest-link group contest, the players within each group choose an
equal level of efforts in equilibrium, because the performance of each group
is defined as the minimum of individual players’ performances in the group.
Namely, e11 = e12 and e21 = e22 hold at equilibrium. Using these necessary
conditions for equilibrium, we examine the pure-strategy Nash equilibrium in
the following numerical examples.

Example i. A symmetric 2-group-2-member case in which multiple pure-strategy
Nash equilibria exist: α = 1.5, n = 2, m1 = m2 = 2, k = 1.2.

Given these parameters, we first check if the 4−tuple vector of effort levels
(e11,eK

12,e21,eK
22) constitutes a Nash equilibrium of the game or not, where the

superscript K denotes the “key” players in each group and the key player in each
group means the player within the group who plays a decisive role in determining
the Nash equilibrium of the game. The strategy profile (e11,eK

12,e21,eK
22) then

implies that the low-valuation players in each group are the key players.
Since the key players in the contest are the low-valuation players in each

group, we first compute eK
12 and eK

22 that satisfy the first-order and second-order
conditions for maximizing the payoffs of the low-valuation players in each group,
i.e., πb

12 and πb
22. We then have eK

12 = eK
22 = 0.375.2 And, from the necessary

conditions for equilibrium, we have e11 = eK
12 and e21 = eK

22. We then have the
following vector of effort levels as an equilibrium candidate:

(e11 = 0.375,eK
12 = 0.375,e21 = 0.375,eK

22 = 0.375).

For this strategy profile to be a Nash equilibrium, each player shouldn’t have
an incentive to change his effort level, given the other players’ effort levels in this
profile. We have checked the existence of deviation incentives of all the players
(including the key players’ deviation incentives, because, when α > 1, each eK

12

2However, note that when α > 1 each solution eK
12 and eK

22 guarantees the local maximum,
but not necessarily the global one. We need to check if each eK

12 and eK
22 is indeed the global

maximizer, given the other players’ effort levels.
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and eK
22 satisfying the first-order and second-order conditions for maximizing

guarantees the local maximum but not necessarily the global one) by plotting
each player’s expected payoff for given the other players’ effort levels. We find
that there is no such an incentive for the players. So, the above strategy profile
constitutes a Nash equilibrium of the game.

In the same way, we propose the following two vectors of effort levels as our
equilibrium candidates. The first one indicates that the high-valuation players in
each group are the key players. The second one indicates that the high-valuation
player is the key player in a group, while, in the other group, the low-valuation
player is the key player:

(eK
11 = 0.45,e12 = 0.45,eK

21 = 0.45,e22 = 0.45),

(eK
11 = 0.441689619,e12 = 0.441689619,e21 = 0.368074683,eK

22 = 0.368074683).

We, for each of these strategy profiles, have checked whether each player
has an incentive to change his effort level in the profile. We find that the low-
valuation player (who is not the key player) in the group has the incentive to
decrease his effort level, given the other players’ effort levels, in both strategy
profiles. Hence, the two strategy profiles do not constitute the Nash equilibrium
of the game. This is intuitively understandable if we note that in a group the
low-valuation player’s willingness to exert effort is less than the high-valuation
player’s, given effort levels of the players in the other group. In other words,
it means that in equilibrium the key player in each group should be the low-
valuation player in that group. To sum up, we find that there exists the following
pure-strategy Nash equilibrium which is the coalition-proof Nash equilibrium as
well:

(e∗11 = 0.375,e∗12
K = 0.375,e∗21 = 0.375,e∗22

K = 0.375).

Along with this equilibrium, due to the perfect complementarity among the
performances of the individual players within the group, there also exist many
pure-strategy Nash equilibria as follows:{
(e11 = e∗1,e12 = e∗1,e21 = e∗2,e22 = e∗2) | 0≤ e∗1 ≤ eb

12(e
∗
2) and 0≤ e∗2 ≤ eb

22(e
∗
1)
}
.

Note that the strategy profile (e∗11 = 0,e∗12 = 0,e∗21 = 0,e∗22 = 0) constitutes a
Nash equilibrium of the game.

Example ii. A symmetric 2-group-2-member case in which a unique pure-
strategy Nash equilibrium exists: α = 2.5, n = 2, m1 = m2 = 2, k = 1.2.
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As in Example i, we check if the 4−tuple vector of effort levels (e11,eK
12,e21,eK

22)
constitutes a Nash equilibrium of the game. Solving the first-order conditions for
maximizing the payoffs for the low-valuation players in each group, we have the
following vector of effort levels as an equilibrium candidate:

(e11 = 0.625,eK
12 = 0.625,e21 = 0.625,eK

22 = 0.625).

For this strategy profile to be a Nash equilibrium, each player shouldn’t have
an incentive to change his effort level, given the other players’ effort levels in the
profile. We have checked the existence of the low-valuation player’s deviation
incentive by plotting his expected payoff for given the other players’ effort levels,
and find that there is indeed such an incentive to decrease his effort level to
zero. This implies that the solution eK

12 and eK
22 satisfying the first-order and

second-order conditions for maximizing the low-valuation players’ payoffs are
the local maximizers, not the global ones. Thus, the above strategy profile does
not constitute a Nash equilibrium of the game.

Although there is no pure-strategy Nash equilibrium which is derived from
the first-order and second-order conditions for maximizing the payoffs of the
key players in each group, due to the perfect complementarity among the per-
formances of the individual players within the group, there exists the following
pure-strategy Nash equilibrium and it is a unique pure-strategy Nash equilibrium
of the game:

(e∗11 = 0,e∗12 = 0,e∗21 = 0,e∗22 = 0).

So far we have examined two numerical examples for the symmetric two-
group-two-member weakest-link contest. Through this exercise, we heuristically
have gained a little understanding of the existence and the structure of the Nash
equilibrium of the weakest-link group contest with the IRS production func-
tion. Based on our understanding and the finding of Pérez-Castrillo and Verdier
(1992), we extend the symmetric two-group-two-member contest to the symmet-
ric n-group-mi-member case. I.e., we examine the case in which n ≥ 2, mi ≥ 2,
v1m1 = v2m2 = · · · = vnmn(≡ v), and pi =

Xi
∑

n
j=1 X j

. The following lemma summa-
rizes our results on this case. All the proofs in the paper are presented in the
appendix.

Lemma 2. The pure-strategy Nash equilibrium in the symmetric weakest-link
contest has the following properties:

(a) When α < 2, there exist multiple pure-strategy Nash equilibria.

(b) When α ≥ 2, there exists a unique pure-strategy Nash equilibrium,
(0, . . . ,0, · · · ,0, . . . ,0).
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Lemma 2 says that there may exist multiple pure-strategy Nash equilibria or
a unique Nash equilibrium, depending on the size of α , when the key players
(the lowest-valuation players) in each group are symmetric. Then, what if the
key players are not symmetric? To answer this, we consider an asymmetric two-
group-two member case: n = 2, m1 = m2 = 2, v12 = k > 1, and v22 = 1.3 Our
results on this case are summarized in the following lemma. Lemma 3 shows that
there may exist multiple or a unique pure-strategy Nash equilibrium, depending
on the relative size of the key players’ valuations (the structure of the valuations)
as well as the size of α .

Lemma 3. The pure-strategy Nash equilibrium in the asymmetric 2-group weakest-
link contest has the following properties:

(a) When α < 2 and k < 1
(α−1)1/α

, there exist multiple pure-strategy Nash equi-
libria.

(b) When α < 2 and k≥ 1
(α−1)1/α

or α ≥ 2, there exists a unique pure-strategy
Nash equilibrium, (0,0,0,0).

From Lemma 2 and Lemma 3 we see that the increasing returns to scale
of the production function in the weakest-link contest may result in different
characteristics of the pure-strategy Nash equilibrium of the game in terms of
the multiplicity of the equilibrium, comparing with the constant and decreasing
returns to scale of production functions. The following proposition summarizes
this.

Proposition 4. The pure-strategy Nash equilibrium in the weakest-link group
contest with the IRS production function has the following properties:

(a) The players in each group play the same strategy: e∗i1 = e∗i2 = · · ·= e∗imi
(≡

e∗i ).

(b) Depending on the value of α and the valuation structure of the key (lowest-
valuation) players in each group, there may exist multiple pure-strategy
Nash equilibria as in the CRS and DRS cases.

(c) However, unlike the CRS and DRS cases, there may exist a unique pure-
strategy Nash equilibrium in which all the players choose zero effort levels,
i.e., e∗i = 0 ∀i.

3We have tried to analyze the asymmetric n > 2 group case. However, we could not complete
it even in the case of n = 3, due to the intricateness in solving the payoff-maximization problems
for the key players whose valuations are different each other. We ask for the readers’ and the
reviewer’s understanding on this.
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3.2. F(·) = MAX: THE BEST-SHOT GROUP CONTEST

3.2.1 α = 1: the CRS production function

Group i’s performance Xi is now defined as the maximum function max{ei1, . . . ,
eimi}. Player k in group i seeks to maximize his expected payoff by choosing eik

πik = vik pi(Xi,X−i)− eik. (20)

For getting the best responses of the players in the contest, we use the “imag-
inary” best responses of the players as we did in Section 3.1.1, and have the
following fact that is the same as the one in (8):

eb
i1(X−i)≥ eb

i2(X−i)≥ ·· · ≥ eb
imi
(X−i) for all X−i. (21)

Using the imaginary best responses of the players, the property in (21), and
the characteristics of the best-shot group impact function (maximum function),
i.e., the performance of a group is determined by the maximum of the individual
players’ performances within that group, we obtain the best responses of the
players in each group i:

eB
ik(e−ik,X−i) (22)

=



0 for eb
ik(X−i)≤max{eil}mi

l=1(6=k)

eb
ik(X−i) for eb

ik(X−i)> max{eil}mi
l=1(6=k) and

πik(eb
ik(X−i),e−ik,X−i)> πik(0,e−ik,X−i)

0 for eb
ik(X−i)> max{eil}mi

l=1(6=k) and
πik(eb

ik(X−i),e−ik,X−i)≤ πik(0,e−ik,X−i).

From the best responses of the players in (22), we obtain the pure-strategy
Nash equilibrium of the game. Let a (∑n

j=1 m j)−tuple vector of effort levels
(e∗11, . . . ,e

∗
1m1

, . . . ,e∗n1, . . . ,e
∗
nmn

) represent a Nash equilibrium of the game. The
proposition describes the equilibrium, which is examined in Chowdhury et al.
(2013).

Proposition in Chowdhury et al. (2013) The pure-strategy Nash equilibrium in
the best-shot group contest with the CRS production function has the following
properties:

• There exists an equilibrium in which the highest-valuation player in each
group exerts effort and the others in that group free ride:
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(a) For group i with vi1 > vi2, the players play the strategies: e∗i1 =
eb

i1(X
∗
−i) and e∗il = 0 for l = 2, . . . ,mi.

(b) For group j with v j1 = v jt > v jt+1 for some t, the players play the
strategies: e∗jo = eb

j1(X
∗
− j) where o = 1 or 2 or 3 · · · or t and e∗jl = 0

for all l 6= o.

• There may exist an equilibrium in which the kith-highest-valuation player
in each group exerts effort and the others in that group free ride:

(a) For group i with vi1 > vi2, the players play the strategies: e∗iki
=

eb
iki
(X∗−i) where ki 6= 1 and e∗il = 0 for all l 6= ki.

(b) For group j with v j1 = v jt > v jt+1 for some t, the players play the
strategies: e∗jk j

= eb
jk j
(X∗− j) where k j 6= 1,2, . . . , t and e∗jl = 0 for all

l 6= k j.

The proposition implies that, in equilibrium, only a player in each group
is active. The active player within the group is the highest-valuation player or
may be one of the others. In other words, the equilibrium found in Baik (2008)
always exists in the best-shot group contest with the CRS production function.
In addition to this equilibrium, depending on the parameters within the model,
there may also exist different type of equilibria in which the highest-valuation
players in the group free ride.

3.2.2 α < 1: the DRS production function

Group i’s performance Xi is now defined as the maximum function max
{

eα
i1, . . . ,e

α
imi

}
.

Player k in group i chooses eik that maximizes his expected payoff

πik = vik pi(Xi,X−i)− eik. (23)

As in the previous section, we use the “imaginary” best responses in order
to get the best-responses of the players in each group. eb

ik is the effort level that
maximizes

π
b
ik = vik pi(eα

ik,X−i)− eik. (24)

Thus, eb
ik satisfies the following first-order condition:

vik
∂ pi

∂ (eα
ik)

α

e1−α

ik

−1 = 04. (25)
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Since α is less than 1, the first-order condition means that

eb
i1(X−i)≥ eb

i2(X−i)≥ ·· · ≥ eb
imi
(X−i) for all X−i. (26)

Using the imaginary best responses of the players, the property in (26), and
the fact that the performance of a group is determined by the maximum of the
individual players’ performances within that group, we obtain the following the
best responses of the players in group i:

eB
ik(e−ik,X−i) (27)

=



0 for eb
ik(X−i)≤max{eil}mi

l=1(6=k)

eb
ik(X−i) for eb

ik(X−i)> max{eil}mi
l=1(6=k) and

πik(eb
ik(X−i),e−ik,X−i)> πik(0,e−ik,X−i)

0 for eb
ik(X−i)> max{eil}mi

l=1(6=k) and
πik(eb

ik(X−i),e−ik,X−i)≤ πik(0,e−ik,X−i).

From the best responses of the players in (27), we obtain the pure-strategy
Nash equilibrium of the game. Let a (∑n

j=1 m j)−tuple vector of effort levels
(e∗11, . . . ,e

∗
1m1

, . . . ,e∗n1, . . . ,e
∗
nmn

) represent a Nash equilibrium. Proposition 5 de-
scribes the equilibrium.

Proposition 5. The pure-strategy Nash equilibrium in the best-shot group con-
test with the DRS production function has the following properties:

• There exists an equilibrium in which the highest-valuation player in each
group exerts effort and the others in that group free ride:

(a) For group i with vi1 > vi2, the players play the strategies: e∗i1 =
eb

i1(X
∗
−i) and e∗il = 0 for l = 2, . . . ,mi.

(b) For group j with v j1 = v jt > v jt+1 for some t, the players play the
strategies: e∗jo = eb

j1(X
∗
− j) where o = 1 or 2 or 3 · · · or t and e∗jl = 0

for all l 6= o.

• There may exist an equilibrium in which the kith-highest-valuation player
in each group exerts effort and the others in that group free ride:

4The second-order condition for the maximum is satisfied as in Section 3.1.2.
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(a) For group i with vi1 > vi2, the players play the strategies: e∗iki
=

eb
iki
(X∗−i) where ki 6= 1 and e∗il = 0 for all l 6= ki.

(b) For group j with v j1 = v jt > v jt+1 for some t, the players play the
strategies: e∗jk j

= eb
jk j
(X∗− j) where k j 6= 1,2, . . . , t and e∗jl = 0 for all

l 6= k j.

• The equilibrium structure and characteristics are the same as those in the
the best-shot group contest with the CRS production function.

As in the weakest-link group contest, the decreasing returns to scale of the
production function gives us the same structure of “imaginary” best responses,
and consequently the same structure of best responses of the players as those
obtained in case of the constant returns to scale. Therefore, the decreasing re-
turns to scale of the production function has no effect on changing the nature of
the Nash equilibrium of the best-shot group contest with the constant returns to
scale.

3.2.3 α > 1: the IRS production function

Group i’s performance Xi is defined as max
{

eα
i1, . . . ,e

α
imi

}
. Player k in group

i chooses eik that maximizes his expected payoff

πik = vik pi(Xi,X−i)− eik. (28)

As before, we first try using the “imaginary” best responses of the players in
each group to derive the best responses of them and find the equilibrium of the
game. The imaginary best response of player k in group i, eb

ik, is the effort level
that maximizes

π
b
ik = vik pi(eα

ik,X−i)− eik. (29)

Then the interior maximizer eb
ik satisfies the following first-order condition

for maximizing πb
ik:

vik
∂ pi

∂ (eα
ik)

αeα−1
ik −1 = 0. (30)

The second-order condition for the maximization is as follows:

vikα

(
∂ 2 pi

∂ (eα
ik)

2 αe2(α−1)
ik +(α−1)

∂ pi

∂ (eα
ik)

eα−2
ik

)
< 0. (31)
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However, as in Section 3.1.3, the second-order condition is not necessar-
ily satisfied for any arbitrary value of eik > 0, because the first term within the
bracket has a negative sign but the second one has a positive sign. This implies
that eb

ik satisfying both the first-order condition (30) and the second-order con-
dition (31) does not guarantee player k in group i the global maximum of πb

ik.
The solution eb

ik for the first-order condition is surely the local maximizer, but
not necessarily the global one. Therefore, we need to check if the interior maxi-
mizer eb

ik obtained from the first-order and second-order conditions indeed gives
the player the highest expected payoff. Therefore, when the production function
exhibits increasing returns to scale (α > 1), the imaginary best responses of the
players derived from the first-order and second-order conditions may lead us to
an erroneous way of finding the Nash equilibrium of the game. To understand
this more specifically, we consider the following simple best-shot group contest
with α > 1 as an example.

Two symmetric groups compete against each other, each group consists of
two members, and the members within each group have the valuations on the
prize, k ≥ 1 and 1, respectively. I.e., n = 2, m1 = m2 = 2, v11 = v21 = k (≥ 1),
and v12 = v22 = 1. We use the Tullock-form contest success function for our
analysis:

pi(X1,X2) =
Xi

X1 +X2
=

max
{

eα
i1,e

α
i2

}
max

{
eα

11,e
α
12

}
+max

{
eα

21,e
α
22

} for i = 1,2.

In the best-shot group contest, since each group’s performance is determined
by the maximum of the individual members’ performances, only a player in each
group would be active, i.e., choose a positive effort level, in equilibrium. So, we
have the necessary conditions for equilibrium: e∗i1 > 0 and e∗i2 = 0 or e∗i1 = 0 and
e∗i2 > 0 for i = 1,2. Considering these conditions, we examine all the possible
pure-strategy Nash equilibria in the following numerical examples.

Example iii. A symmetric 2-group-2-member case in which there exist all kinds
of pure-strategy Nash equilibria: α = 1.5, n = 2, m1 = m2 = 2, k = 1.5.

With these parameters, we first check if the 4−tuple vector of effort levels
(eA

11,e12,eA
21,e22) constitutes a Nash equilibrium of the game, where the super-

script A denotes the “Active” players in each group and the active player(s) in
each group means the player(s) within the group who chooses a strictly positive
effort level. The strategy profile (eA

11,e12,eA
21,e22) then implies that the high-

valuation players in each group are active in the contest.
Since the active players in the contest are the high-valuation players in each

group, we first compute eA
11 and eA

21 that satisfy the first-order and second-order
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conditions for maximizing the payoffs of the high-valuation players in each
group, i.e., πb

11 and πb
21. We then have eA

11 = eA
21 = 0.5625.5 And, from the

necessary conditions for equilibrium, we have e12 = e22 = 0. We then have the
following vector of effort levels as an equilibrium candidate:

(eA
11 = 0.5625,e12 = 0,eA

21 = 0.5625,e22 = 0).

For this strategy profile to be a Nash equilibrium, each player shouldn’t have
an incentive to change his effort level, given the other players’ effort levels in this
profile. We have checked the existence of deviation incentives of all the play-
ers (including the active players’ deviation incentives) by plotting each player’s
expected payoff for given the other players’ effort levels. We find that there is
no such an incentive for the players. So, the above strategy profile constitutes a
Nash equilibrium of the game.

In the same way, we propose the following two vectors of effort levels as
our equilibrium candidates and check them. The first one indicates that the low-
valuation players in each group are active and the other one indicates that the
high-valuation player is active in group 1, while in group 2 the low-valuation
player is active:

(e11 = 0,eA
12 = 0.375,e21 = 0,eA

22 = 0.375),

(eA
11 = 0.513528818,e12 = 0,e21 = 0,eA

22 = 0.342352545).

We, for each of these strategy profiles, have checked whether each player has
an incentive to change his effort level in the profile, and have found that there
is no such an incentive for the players. Therefore, the above strategy profiles
constitute the Nash equilibrium. This is intuitively understandable if we note
that the valuation of player 1 in each group is not too high relative to the one
of player 2. So, although in each group the high-valuation player’s willingness
to exert effort is greater than the low-valuation player’s, the difference between
them is not big enough and this makes it possible that the high-valuation player
in a group free ride on the low-valuation player in the group. We predict that this
free riding of the high-valuation player will disappear as the valuation difference
becomes larger. We show this in the following examples.

In sum, there exist the following pure-strategy Nash equilibria:

(e∗11
A = 0.5625,e∗12 = 0,e∗21

A = 0.5625,e∗22 = 0),

5However, note that when α > 1 each solution eA
11 and eA

21 guarantees the local maximum,
but not necessarily the global one. We need to check if each eA

11 and eA
21 is indeed the global

maximizer, given the other players’ effort levels.
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(e∗11 = 0,e∗12
A = 0.375,e∗21 = 0,e∗22

A = 0.375),

(e∗11
A = 0.513528818,e∗12 = 0,e∗21 = 0,e∗22

A = 0.342352545).

Example iv. A symmetric 2-group-2-member case in which there exist pure-
strategy Nash equilibria where the active players are the high-valuation players
or the low-valuation players in each group: α = 1.5, n= 2, m1 =m2 = 2, k = 2.5.

As we did in the previous example, given these parameters, we have pro-
posed all the possible strategy profiles as our equilibrium candidates and have
checked if each of them constitutes a Nash equilibrium of the game. We find
that, in this example, there exist the following two symmetric equilibria exist:

(e∗11
A = 0.9375,e∗12 = 0,e∗21

A = 0.9375,e∗22 = 0)

and
(e∗11 = 0,e∗12

A = 0.375,e∗21 = 0,e∗22
A = 0.375).

Note that, comparing to the equilibria existing in Example iii, the asymmetric
equilibrium, in which the active players in the contest are the high-valuation
player in a group and the low-valuation player in the other group, does not exist
in this example. This is because the valuation difference increased: k = 1.5 in
Example iii to k = 2.5 now.

Example v. A symmetric 2-group-2-member case in which there exists a unique
pure-strategy Nash equilibrium where the active players are the high-valuation
players in each group: α = 1.5, n = 2, m1 = m2 = 2, k = 3.5.

With these parameters, we find that there exists only the following symmetric
Nash equilibrium:

(e∗11
A = 1.3125,e∗12 = 0,e∗21

A = 1.3125,e∗22 = 0).

Note that the valuation difference increased: k = 2.5 in Example iv to k = 3.5
in current example. Since the valuation difference is large enough, the equilib-
rium in which the high-valuation player in a group free rides on the low-valuation
player does not exist.

Example vi. A symmetric 2-group-2-member case in which there is no pure-
strategy Nash equilibrium: α = 2.5, n = 2, m1 = m2 = 2, k = 1.1.
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Given these parameters, we first check if the 4−tuple vector of effort levels
(eA

11,e12,eA
21,e22) constitutes a Nash equilibrium of the game. Solving the first-

order conditions for maximizing the payoffs for the high-valuation players, we
have the following vector of effort levels as an equilibrium candidate:

(eA
11 = 0.6875,e12 = 0,eA

21 = 0.6875,e22 = 0).

For this strategy profile to be a Nash equilibrium, each player shouldn’t have
an incentive to change his effort level, given the other players’ effort levels in
this profile. We first have checked the existence of the high-valuation player’s
deviation incentive by plotting his expected payoff for given the other players’
effort levels, and find that there is indeed such an incentive to decrease his effort
level to zero. This implies that the solution eA

11 and eA
21 satisfying the first-order

and second-order conditions for maximizing the high-valuation players’ payoffs
are the local maximizers, not the global ones. Thus, the above strategy profile
does not constitute a Nash equilibrium of the game. In the same way, we propose
the other possible vectors of effort levels as our equilibrium candidates. We, for
each of these strategy profiles, have checked whether each player has an incen-
tive to deviate from the proposed profiles. We find that these do not constitute
the Nash equilibrium, either. So, we conclude that there is no Nash equilibrium,
given these parameters.

So far we have examined several numerical examples of the symmetric two-
group-two-member best-shot contest. Through this exercise, we heuristically
have gained a little understanding of the existence and the structure of the Nash
equilibrium of the best-shot group contest with the IRS production function.
Based on this and the finding of Pérez-Castrillo and Verdier (1992), we ex-
tend the symmetric two-group-two-member contest to the symmetric n-group-
mi-member one: n≥ 2, mi ≥ 2, v11 = v21 = · · ·= vn1(≡ v), and pi =

Xi
∑

n
j=1 X j

. Our
results on this case are summarized in the following lemma.

Lemma 6. The pure-strategy Nash equilibrium in the symmetric best-shot con-
test has the following properties:

(a) When α < 2, there exists an equilibrium in which only the highest-valuation
players in groups exert effort and the others free ride. And there may also
exist an equilibrium in which the highest-valuation players in the groups
free ride on.

(b) When α ≥ 2, there is no pure-strategy Nash equilibrium.
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Lemma 6 says that, depending on the size of α , there may or may not ex-
ist the pure-strategy Nash equilibrium in which the highest-valuation players in
groups are the active ones. Note that that equilibrium always exists in the CRS
and DRS cases. Then what if the highest-valuation players in each group are not
symmetric? To answer this, we consider an asymmetric two-group-two member
case: n = 2, m1 = m2 = 2, v11 = k > 1, and v21 = 1. Our results on this case are
summarized in the following lemma.

Lemma 7. The pure-strategy Nash equilibrium in the asymmetric 2-group best-
shot contest has the following properties:

(a) When α < 2 and k < 1
(α−1)1/α

, there exists an equilibrium in which the
highest-valuation player in each group exerts effort and the other in that
group free rides. There may also exist an equilibrium in which the highest-
valuation player in a group free rides.

(b) When α < 2 and k ≥ 1
(α−1)1/α

or α ≥ 2, there does not exist the equi-
librium in which the highest-valuation player in each group exerts effort
and the other in that group free rides. However, there may exist the other
equilibrium in which the highest-valuation player in a group free rides.

Lemma 7 shows that the equilibrium in which the highest-valuation player
free rides in his group can still exist, even though there does not exist the equi-
librium in which only the highest-valuation player exerts effort and the others in
the group do nothing. This is in contrast to the equilibrium characteristics in the
CRS and DRS cases which say that there always exists the equilibrium in which
only the highest-valuation player exerts efforts in the group and there may exist
the other equilibrium in which the highest-valuation player free rides.

Lemma 6 and 7 show the increasing returns to scale of the production func-
tion in the best-shot contest may result in different characteristics on the pure-
strategy Nash equilibrium of the game, comparing with the CRS and DRS cases.
The following proposition presents this.

Proposition 8. The pure-strategy Nash equilibrium in the best-shot group con-
test with the IRS production function has the following properties:

(a) Depending on the value of α and the valuation structure of the players,
there may or may not exist the equilibrium in which only the highest-
valuation player exerts effort and the others in the group free ride.

(b) There may not exist any pure-strategy Nash equilibrium.
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(c) There may exist the equilibrium in which the highest-valuation player free
rides in the group, even though there does not exist the equilibrium in
which the highest-valuation player in the group exerts effort and the others
free ride.

4. CONCLUSION

According to the literature on perfect-substitute contests between groups, the
shape of the production function of individual players for the contest matters.
Specifically, the CRS of the production function brings a Nash equilibrium in
which only the highest-valuation players in each group makes efforts and the rest
of the players have a free ride, while the DRS of the production function removes
the free ride of the players in equilibrium. Each player exerts effort more in
proportion to his valuation on the prize. The IRS of the production function
brings an equilibrium in which each player expends effort less in proportion to
his valuation.

In this paper, we have studied the matter of the production function in the
weakest-link and best-shot group contests. We have obtained following main re-
sults. First, different from the perfect-substitute group contests, the DRS of the
production function does not have any effect on changing the characteristics of
the equilibrium of the weakest-link and best-shot group contests with the CRS.
Namely, the CRS and DRS of the production function give us the same nature of
equilibrium. Second, the IRS of the production function causes the nonconcavity
of the players’ payoff functions, and it complexifies the payoff-maximizing prob-
lems for the players and the way of deriving the best responses of the players.
Hence, the close attention is needed to figure out the equilibrium of the weakest-
link and best-shot group contests with the IRS. Third, the IRS makes changes
in equilibrium properties. Specifically, in the weakest-link contest with the CRS
and DRS, there always exist multiple pure-strategy Nash equilibria. However,
in case of the IRS, a unique equilibrium may exist. In the best-shot contest with
the CRS and DRS, there always exists the equilibrium in which only highest-
valuation player in a group expends effort and the others in the group free rides
on him, and then there may exist the other equilibrium in which the highest-
valuation player free rides on the others in the group. On the contrary, in case of
the IRS, the latter equilibrium may exist even in the case where the former does
not exist at all. Besides, there may not exist any pure-strategy Nash equilibrium.

In this paper we have examined several numerical examples for the contests
with the IRS and based on our heuristic findings in those examples, we found
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the equilibrium while assuming the symmetry among the lowest or highest val-
uation players and the restricted number of players. Is there any way of finding
the equilibrium, if any, more formally/systematically rather than analyzing each
case with specific parameter values or assumptions within the model? This ques-
tion must be an interesting/meaningful one in the literature on group contests,
although now it seems very challenging. We leave it for the future work.



88 GROUP CONTESTS AND TECHNOLOGIES

Appendix

Proof of Lemma 2. Let us consider the condition under which there are λ active
groups in equilibrium, where group i is called active if Xi > 0. That is, we
consider the following strategy profile:(

e11, . . . ,eK
1m1

, · · · ,eλ1, . . . ,e
K
λmλ

,0, . . . ,0, · · · ,0, . . . ,0
)
,

where ei1 = ei2 = · · · = eK
imi

> 0 for all i = 1,2, . . . ,λ . Since the key players
in the active groups are the lowest-valuation players in each group and they are
assumed to be symmetric, i.e., v1m1 = · · · = vλmλ

= v, we have the symmetric
solutions, eK

1m1
= eK

2m2
= · · · = eK

λmλ
= (λ−1)αv

λ 2 , that satisfy the first-order and
second-order conditions for maximizing the payoffs of all the key players in the
active groups. The above strategy profile is then(
(λ −1)αv

λ 2 , . . . ,
(λ −1)αv

λ 2 , · · · , (λ −1)αv
λ 2 , . . . ,

(λ −1)αv
λ 2 ,0, . . . ,0, · · · ,0, . . . ,0

)
.

For this strategy profile to be a Nash equilibrium, every player (including
the key players in the active groups) shouldn’t have any incentive to change his
effort level. First, we consider the non-deviation condition for the key players
in the active groups. At the strategy profile above, the key player in each active
group has his payoff:

π
∗
imi

= v
1
λ
− (λ −1)αv

λ 2 =
(λ −α(λ −1))v

λ 2 for i = 1,2, . . . ,λ .

Denoting πd
imi
(eimi) by the payoff the key player obtains when he changes his

effort level to the boundary eimi = 0 and eimi = ∞, we have:

π
d
imi
(eimi = 0) = 0 and π

d
imi
(eimi = ∞) =−∞.

So, we obtain the following non-deviation condition for the key players in
the active groups:

π
∗
imi

> π
d
imi
(eimi = 0)⇔ α <

λ

λ −1
.

Second, we consider the deviation incentives for the other players, except for
the key player, in each active group. Since the key player has the lowest valuation
in the group, the valuations of the other players are greater than or at least equal
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to the valuation of the key player, and it means that their willingness to exert
effort, given the effort levels of the players in the other groups, is greater than
or at least equal to the key player’s one. Thus, they do not have any incentive to
change (decrease) their effort levels in the profile above. Last, we consider the
deviation incentives for the players in the inactive groups. In each inactive group,
all the players choose zero effort level. Then any player doesn’t have an incentive
to change (increase) his effort level, due to the perfect complementarity among
the players within the group. In short, if α < λ

λ−1 , no player in the contest has
an unilateral incentive to deviate from the above strategy profile, and the strategy
profile constitutes the Nash equilibrium, in which λ groups actively participate
in the contest and the rest (n−λ ) groups are inactive.

In addition to this equilibrium, if α < λ

λ−1 , there also exist the Nash equilib-
rium in which less than λ number of active groups exist. Namely, λ represents
the maximum number of active groups that can exist in equilibrium. Specifically,
we have the following:

• If 1 < α < n
n−1 , there exist the Nash equilibria in which there are maxi-

mally n active groups.

• If n
n−1 ≤ α < n−1

(n−1)−1 , there exist the Nash equilibria in which there are
maximally (n−1) active groups.

• If n−1
(n−1)−1 ≤ α < n−2

(n−2)−1 , there exist the Nash equilibria in which there
are maximally (n−2) active groups.

...

• If 3
2 ≤ α < 2, there exists the Nash equilibrium in which there are 2 active

groups.

• If 2 ≤ α , there does not exist the Nash equilibrium in which there are at
least 2 active groups. In this case, there exists a unique pure-strategy Nash
equilibrium in which all the groups are inactive, i.e.,

(
e∗11 = 0, ...,e∗1m1

= 0, · · · ,
e∗n1 = 0, ...,e∗nmn

= 0
)
.

�

Proof of Lemma 3. Given our restrictions, we have the following strategy pro-
file:

(e11,eK
12,e21,eK

22) =

(
αkα+1

(kα +1)2 ,
αkα+1

(kα +1)2 ,
αkα

(kα +1)2 ,
αkα

(kα +1)2

)
,
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where eK
12 and eK

22 are the solutions that satisfy the first-order and the second-
order conditions for maximizing the payoffs for the key players in each group.
We check if the above strategy profile constitutes the Nash equilibrium of the
game. First, we consider the deviation incentives for the key players. At the
above strategy profile, the key players in each group have their payoffs:

π
∗
12 = k

kα

kα +1
− αkα+1

(kα +1)2 =
kα+1(kα +1−α)

(kα +1)2

and
π
∗
22 = 1

1
kα +1

− αkα

(kα +1)2 =
1+ kα −αkα

(kα +1)2 .

Denoting πd
i2(ei2) by the payoff the key player of group i obtains when he

changes his effort level to the boundary ei2 = 0 and ei2 = ∞, we have:

π
d
i2(ei2 = 0) = 0 and π

d
i2(ei2 = ∞) =−∞ for i = 1,2

So, we obtain the following non-deviation condition for the key players in
each group:

π
∗
i2 > π

d
i2(ei2 = 0) for all i = 1,2⇔ α < 2 and k <

1
(α−1)1/α

.

Next, we consider the deviation incentive for the other player, except for the
key player, in each group. Since the key player has the lowest valuation in each
group, the valuation of the other player in the group is greater than or at least
equal to the valuation of the key player. It means that his willingness to exert
effort, given the effort levels of the players in the other group, is greater than
or at least equal to the key player’s one. Thus, he does not have any incentive
to change (decrease) his effort level in the profile above. Hence, if α < 2 and
k < 1

(α−1)1/α
, then no player in the contest has an unilateral incentive to devi-

ate from the above strategy profile, and the strategy profile constitutes the Nash
equilibrium. Otherwise, i.e., α < 2 and k ≥ 1

(α−1)1/α
or α ≥ 2, this equilibrium

disappears. In these cases, there exists a unique pure-strategy Nash equilibrium,
(0,0,0,0). �

Proof of Lemma 6. Let us consider the condition under which there are λ active
groups in equilibrium and the active player in each active group is the highest-
valuation player in that group. That is, we consider the following strategy profile:(

eA
11,0, . . . ,0,e

A
21,0, . . . ,0, · · · ,eA

λ1,0, . . . ,0, 0, . . . ,0, · · · ,0, . . . ,0
)
.
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Since the active players in the active groups are the highest-valuation players
in each group and they are assumed to be symmetric, i.e., v11 = · · · = vλ1 = v,
we have the symmetric solutions, eA

11 = eA
21 = · · · = eA

λ1 =
(λ−1)αv

λ 2 , that satisfy
the first-order and second-order conditions for maximizing the payoffs of all the
active players in the active groups.

For the above strategy profile to be a Nash equilibrium, every player (in-
cluding the active players in the active groups) shouldn’t have any incentive to
change his effort level. First, we consider the non-deviation condition for the ac-
tive players in each active groups. At the strategy profile above, the active player
in each active group has his payoff:

π
∗
i1 =

(λ −α(λ −1))v
λ 2 for i = 1,2, . . . ,λ .

Denoting πd
i1(ei1) by the payoff the active player obtains when he changes

his effort level to the boundary ei1 = 0 and ei1 = ∞, we have:

π
d
i1(ei1 = 0) = 0 and π

d
i1(ei1 = ∞) =−∞.

We then obtain the following non-deviation condition for the active players
in the active groups:

π
∗
i1 > π

d
i1(ei1 = 0)⇔ α <

λ

λ −1
.

Second, we consider the deviation incentives for the other players, except for
the active player, in each active group. Since the active player has the highest
valuation in the group, the other players’ valuation are less than or at most equal
to the valuation of the active player, and it means that their willingness to exert
effort, given the effort levels of the players in the other groups, is less than or at
most equal to the active player’s one. Thus, they do not have any incentive to
change (increase) their effort levels in the profile above. Last, we consider the
deviation incentives for the players in the inactive groups. In each inactive group,
all the players including the highest-valuation player choose zero effort level. So,
unless the highest-valuation player has an incentive to increase his effort level,
the other players in the group do not have any deviation incentive, either. The
non-deviation condition for the highest-valuation player in each inactive group
is α ≥ λ+1

λ
. To sum up, if λ+1

λ
≤ α < λ

λ−1 , no player in the contest has an
unilateral incentive to deviate from the above strategy profile, and the strategy
profile constitutes the Nash equilibrium, in which λ groups actively participate
in the contest and the active player in each active group is the highest-valuation



92 GROUP CONTESTS AND TECHNOLOGIES

player in the group. Here λ represents the number of active groups existing in
equilibrium. Specifically, we have the following:

• If 1 < α < n
n−1 , there exist the Nash equilibria in which there are n active

groups and the highest-valuation player in each group exerts effort and the
others free ride on him. And, depending on parameter values (the structure
of valuations for the players) within the model, there may exist different
type of equilibrium in which the highest-valuation players in the groups
free ride.

• If n
n−1 ≤ α < n−1

(n−1)−1 , there exist the Nash equilibria in which there are
(n−1) active groups and the highest-valuation player in each active group
exerts effort and the others free ride. And the other equilibrium mentioned
above may exist.

• If n−1
(n−1)−1 ≤ α < n−2

(n−2)−1 , there exist the Nash equilibria in which there
are (n− 2) active groups and the highest-valuation player in each active
group exerts effort and the others free ride. And the other equilibrium may
exist.

...

• If 3
2 ≤ α < 2, there exists the Nash equilibrium in which there are 2 active

groups and the highest-valuation player in each active group exerts effort
and the others free ride. And the other equilibrium may exist.

• If 2 ≤ α , there does not exist the Nash equilibrium in which there are
at least 2 active groups and the highest-valuation players are the active
ones. And the other equilibrium, in which the highest-valuation player
free rides, does not exist, either. That is, in this case, there does not exist
any pure-strategy Nash equilibrium of the game.

�

Proof of Lemma 7. Given our restrictions, we have the following strategy pro-
file:

(eA
11,e12,eA

21,e22) =

(
αkα+1

(kα +1)2 ,
αkα+1

(kα +1)2 ,
αkα

(kα +1)2 ,
αkα

(kα +1)2

)
,

where eA
11 and eA

21 are the solutions that satisfy the first-order and the second-
order conditions for maximizing the payoffs for the active players in each group.
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We check if the above strategy profile constitutes the Nash equilibrium of the
game. First, we consider the deviation incentives for the active players. At the
above strategy profile, the active players in each group have their payoffs:

π
∗
11 =

kα+1(kα +1−α)

(kα +1)2

and
π
∗
21 =

1+ kα −αkα

(kα +1)2 .

Denoting πd
i1(ei1) by the payoff the active player of group i obtains when he

changes his effort level to the boundary ei1 = 0 and ei1 = ∞, we have:

π
d
i1(ei1 = 0) = 0 and π

d
i1(ei1 = ∞) =−∞ for i = 1,2

So, we obtain the following non-deviation condition for the active players in
each group:

π
∗
i1 > π

d
i1(ei1 = 0) for all i = 1,2⇔ α < 2 and k <

1
(α−1)1/α

.

Next, we consider the deviation incentive for the other player, except for the
active player, in each group. Since the active player has the highest valuation
in each group, the other player’s valuation is less than or at most equal to the
valuation of the active player. It means that his willingness to exert effort, given
the effort levels of the players in the other group, is less than or at most equal to
the active player’s one. Thus, he does not have any incentive to change (increase)
his effort level in the profile above. Hence, if α < 2 and k < 1

(α−1)1/α
, then no

player in the contest has an unilateral incentive to deviate from the above strategy
profile, and the strategy profile constitutes the Nash equilibrium. Otherwise, i.e.,
α < 2 and k ≥ 1

(α−1)1/α
or α ≥ 2, this equilibrium disappears. However, there

may still exist the other equilibrium in which the highest-valuation player in a
group free rides on the other in his group. See the following example.

Suppose that α = 1.5, k = 1.6, v12 = v22 = 0.9. Given these parameters, we
have the strategy profiles:

(eA
11,e12,eA

21,e22) = (0.531212781,0,0.332007988,0)

and
(e11,eA

12,e21,eA
22) = (0,0.3375,0,0.3375).

Checking if each of these strategy profiles constitutes the Nash equilibrium
or not, we find that the first one is not the Nash equilibrium but the second one
is the equilibrium. �



94 GROUP CONTESTS AND TECHNOLOGIES

REFERENCES

Baik, K.H. (1993) “Effort levels in contests: The public-good prize case” Eco-
nomics Letters 41, 363-367.

Baik, K.H. (2008) “Contests with group-specific public-good prizes” Social Choice
and Welfare 30, 103-117.

Barbieri, S., Malueg, D.A., and Topolyan, I. (2014) “Best-shot group contests
with complete information” Economic Theory 57, 603-640.

Baron, D.P. (1994) “Electoral competition with information and uninformed vot-
ers” American Political Science Review 88, 33-47.

Chowdhury, S.M., Lee, D., and Sheremeta, R.M. (2013). “Top guns may not fire:
Best-shot group contests with group-specific public good prizes” Journal of
Economic Behavior and Organization 92, 94-103.

Chowdhury, S.M., Lee, D., and Topolyan, I. (2016). “The max-min group con-
test” Southern Economic Journal (forthcoming).

Chowdhury, S.M. and Topolyan, I. (2016). “The attack-and-defense group con-
tests: Best-shot versus Weakest-link” Economic Inquiry 54, 548-557.

Chowdhury, S.M. and Topolyan, I. (2016). “The group all-pay auction with
Heterogeneous impact functions” mimeo.

Epstein, G.S. and Mealem, Y. (2009) “Group specific public goods, orchestration
of interest groups with free riding” Public Choice 139, 357-369.

Hillman A.L. and Riley, J.G. (1989) “Politically contestable rents and transfers”
Economics and Politics 1, 17-39.

Hirshleifer J. and Osborne, E. (2001) “Truth, effort, and the legal battle” Public
Choice 108, 169-195.

Kolmar, M. and Rommeswinkel (2013). “Contests with group-specific public
goods and complementarities in efforts” Journal of Economic Behavior and
Organization 89, 9-22.

Katz E., Nitzan, S., and Rosenberg, J. (1990) “Rent-seeking for pure public
goods” Public Choice 65, 49-60.



DONGRYUL LEE 95

Konrad, K. (2009) Strategy and dynamics in contests, Oxford University Press,
Oxford, UK.

Lee, D. (2012). “Weakest-link contests with group-specific public good prizes”
European Journal of Political Economy 28, 238-248.

Lee, D. (2015). “Group contests and technologies” Economics Bulletin 35, 2427-
2438.

Lee, D. and Song, J. (2015). “Optimal group contest” mimeo.

Lee, J. and Lee, D. (2015). “Endogenous choice of group impact functions”
mimeo.

Moldovanu, B and Sela, A. (2001). “The optimal allocation of prizes in contests”
American Economic Review 91, 542-558.

Nitzan S. (1994). “Modeling rent-seeking contests” European Journal of Politi-
cal Economy 10, 41-60.

Peeters, T. (2011). “The shape of success: estimating contest success functions
in sports” Working paper series of Association of Sports Economists, 11-08.
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