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Preference Revelation Games in School Choice
When Students Are Naı̈ve or Strategic

Wonki Jo Cho∗

Abstract Abdulkadiroğlu, Che, and Yasuda (2011) consider the preference
revelation games induced by the immediate acceptance and deferred acceptance
mechanisms (henceforth, the IA and DA games, respectively) when students are
naı̈ve or strategic. They study properties of a class of equilibria of the IA game in
which some strategic student misrepresents his preferences with positive proba-
bility but they do not establish the existence of such equilibria. We show that in
fact, depending on the parameters of the model, the IA game may have no such
equilibrium. Then we provide a condition, termed richness, on the preference
type space that ensures existence. Another result of Abdulkadiroğlu, Che, and
Yasuda (2011) is that in a symmetric equilibrium of the IA game, if a strategic
student of some preference type reports his preferences truthfully, then a naı̈ve
student of the same preference type is at least as well off in that equilibrium of the
IA game as in the dominant strategy, truth-telling equilibrium of the DA game.
This comparison, however, is silent on the welfare of the other naı̈ve students.
We show that some naı̈ve students are indeed worse off under the immediate
acceptance mechanism than under the deferred acceptance mechanism.
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1. INTRODUCTION

In the design of school choice programs, providing students with the incen-
tive to be truthful about their preferences has emerged as an important issue. De-
pending on the assignment mechanism in place, a student may find it profitable
to misrepresent his preferences. From the designer’s viewpoint, such manipula-
tion is problematic because assignments based on the elicited information may
not be desirable with respect to the true preferences. In the context of school
choice, however, manipulation raises another concern related to fairness. With
students exhibiting different levels of strategic sophistication, the sophisticated
may benefit at the expense of the naı̈ve.1 This possibility undermines the de-
signer’s ability to achieve one of the main objectives in school choice: to be fair
in allocating school seats to students.

Given a mechanism, one can formalize this problem by considering the pref-
erence revelation game it induces. The immediate acceptance (henceforth, IA)
mechanism, also known as the “Boston mechanism”, is not strategy-proof (Ab-
dulkadiroğlu and Sönmez, 2003).2,3 Thus, we can analyze the game induced by
the IA mechanism—let us call it the IA game—to compare the welfare of naı̈ve
and strategic students. The set of pure strategy Nash equilibrium outcomes of
the IA game coincides with the set of stable matches for the modified econ-
omy where strategic students are given higher priority than naı̈ve students at all
schools except at those that naı̈ve students rank first (Pathak and Sönmez, 2008).
Therefore, by strategizing well, students can effectively attain higher priority
than those who do not, thus obtaining a seat at more preferred schools.

Abdulkadiroğlu, Che, and Yasuda (2011) (henceforth, ACY) note that two
assumptions play a key role in deriving this result: (i) school priorities are strict;
and (ii) students have complete information. Since these assumptions are un-
likely to be met in real life, it is difficult to draw practical implications from
Pathak and Sönmez (2008). Moreover, under different assumptions on school
priorities or the nature of information, naı̈ve students may benefit from other stu-
dents’ strategic behavior. To advance this point, ACY consider a model where no
student has priority at any school and students have incomplete information as
to whether other students are naı̈ve or strategic. They also assume that students

1Abdulkadiroğlu et al. (2006) provide empirical evidence based on the data collected in Boston
Public Schools.

2The immediate acceptance mechanism is no longer used in Boston Public Schools; it was
replaced by the deferred acceptance mechanism in 2005. For this reason, we follow Thomson
(2011) and use the term “immediate acceptance mechanism”.

3A mechanism is strategy-proof if no student ever benefits by lying about his preferences.
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have the same ordinal preferences over schools while their relative intensities, or
von Neumann-Morgenstern (vNM) preferences (cardinal utilities), may differ.
These vNM preferences are privately drawn according to a common distribution
that is publicly known.

Under these assumptions, ACY compare symmetric equilibria of the IA
game with the dominant strategy, truth-telling equilibrium of the game induced
by the deferred acceptance (henceforth, DA) mechanism, or the DA game. They
show that if some strategic student manipulates with positive probability in a for-
mer equilibrium, then naı̈ve students have a higher probability of obtaining a seat
at top schools in the former equilibrium than in the latter equilibrium. Moreover,
if a strategic student of some preference type reports his preferences truthfully in
a former equilibrium, then a naı̈ve student of the same preference type is at least
as well off in the former equilibrium as in the latter equilibrium.

Although ACY’s results reveal a countervailing strength of the IA mecha-
nism, they do not address two important issues. The first result is concerned
with symmetric equilibria of the IA game satisfying a particular property. The
existence of a symmetric equilibrium is well established. But one cannot expect
that the IA game always has a symmetric equilibrium in which some strategic
student misrepresents his preferences with positive probability. Unless the exis-
tence of equilibria with the latter property is proved, AYC’s result is vacuous.

Even with the existence issue resolved, however, a proper welfare compar-
ison of mechanisms should focus on the payoffs to students, rather than their
probability of being assigned to top schools. The second result of ACY pertains
to payoff comparison, but it is limited to the naı̈ve students of those preference
types who would report truthfully were they strategic. Unless the validity of a
similar statement for the other naı̈ve students is checked, ACY’s welfare com-
parison is incomplete and can be potentially misleading.

Our objective is to complement ACY by addressing these issues. First, we
show that in fact, depending on the parameters of the model, the IA game may
not admit an equilibrium in which some strategic student manipulates with pos-
itive probability. In Example 1, the preference type space, the space from which
vNM preferences are drawn, is very coarse, and this forces each strategic stu-
dent to report his preferences truthfully. Truth-telling is the unique equilibrium
(symmetric or not) of the IA game, and therefore, the first result of ACY does
not apply. Further, the observations from this example can be generalized.

We identify a condition under which the IA game has a symmetric equilib-
rium with the property we are interested in. Our condition requires the preference
type space to be sufficiently “rich”. Specifically, the preference type space is rich
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if some preference type attaches to two schools with adjacent rankings vNM in-
dices with “small” differences. How close these indices should be depends on the
relative capacities of the schools. Theorem 1 shows that if the preference type
space is rich, then each symmetric equilibrium of the IA game has a strategic
student manipulating with positive probability; moreover, the converse is true.

Finally, we provide an example where our concern about the potential wel-
fare loss of naı̈ve students materializes. Example 2 shows that the naı̈ve students
who report differently than the strategic students of the same preference type, are
indeed worse off under the IA mechanism than under the DA mechanism. Thus,
when the IA mechanism is in place, the presence of strategic students is harmful
to some naı̈ve students.

2. THE MODEL

We consider the setup of ACY. Let A ≡ {1, · · · ,m} (m ≥ 2) be the set of
schools. Schools are denoted by a, b, and so on. For each a ∈ A, school a
has capacity qa ∈ N. Schools do not have priorities. Let ∆(A) be the set of all
lotteries over A.

Let N ≡ {1, · · · ,n} be the set of students. Assume that n = ∑a∈A qa. Students
are denoted by i, j, and so on. Let i ∈ N. Student i’s type consists of two
parts. The first part concerns preferences, so we call it his preference type.
Student i has vNM preferences over lotteries defined on schools. The preferences
are drawn from a finite set V ⊆ [0,1]A according to a publicly known, common
distribution f , and for each v ∈V , v1 > v2 > · · ·> vm. We call V the preference
type space. Since V is finite, we may assume that for each v ∈V , f (v)> 0. For
each v ∈V and each a ∈ A, va is the vNM index attached to school a. Note that
any preference type induces the same ordinal preferences over schools: school 1
is most preferred, school 2 is second most preferred, and so on.

Below we consider assignment mechanisms that allow each student to submit
his preferences over schools. The second part of the student’s type pertains to
how he behaves in expressing his preferences; thus, we call it his behavior type.
Each student can be either (i) naı̈ve, always reporting his true preferences; or (ii)
strategic, possibly lying about his preferences. The probability of being naı̈ve is
α ∈ (0,1). We denote the naı̈ve type by 0 and the strategic type by 1. In sum,
V ×{0,1} is the common type space. Types are drawn independently across
students.

An assignment is a profile x≡ (xi)i∈N such that (i) for each i∈N, xi ∈ ∆(A);
and (ii) for each a ∈ A, ∑i∈N xia ≤ qa. Let X be the set of all assignments. Let
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R be the set of all ordinal preferences over A. An (assignment) mechanism is a
mapping from RN to X , associating with each preference profile an assignment.
Denote a generic mechanism by ϕ . We are interested in two well-known mecha-
nisms: the immediate acceptance and deferred acceptance mechanisms, denoted
by IA and DA, respectively. Refer to Abdulkadiroğlu and Sönmez (2003) for the
definition of these mechanisms. Since schools do not have priorities, all ties are
broken randomly when these mechanisms are applied.

Each mechanism ϕ induces a Bayesian preference revelation game Γ(ϕ), de-
fined as follows. Observing his type, each student reports his ordinal preferences
over schools. The naı̈ve type reports truthfully while the strategic type reports
any preferences. The mechanism ϕ is applied to the elicited preference profile,
to obtain an assignment. Then each student receives a lottery over schools and
his payoff is determined by his preference type. We are interested in symmetric
(Bayesian Nash) equilibria of Γ(ϕ). Since the game is finite, a symmetric equi-
librium exists. Also, since the DA mechanism is strategy-proof (Abdulkadiroğlu
and Sönmez, 2003), truth-telling is a dominant strategy equilibrium of Γ(DA).

3. COMPARISON OF THE IA AND DA MECHANISMS

Now we compare symmetric equilibria of Γ(IA) and Γ(DA) in terms of (i)
the probability that a naı̈ve student is assigned to top schools; and (ii) the welfare
of naı̈ve students. The following proposition is due to ACY (Theorem 2).

Proposition 1. Let σ IA be a symmetric equilibrium of Γ(IA) and σDA the domi-
nant strategy, truth-telling equilibrium of Γ(DA).

(1) Suppose that some strategic student misrepresents his preferences with
positive probability in σ IA. Then for some k ∈ A, each naı̈ve student is assigned
to each of the top k schools, {1, · · · ,k}, with at least as high probability and to
some school in that set with higher probability when σ IA is played in Γ(IA) than
when σDA is played in Γ(DA).

(2) Let v∈V and suppose that a strategic student of preference type v reports
his preferences truthfully in σ IA. Then a naı̈ve student of preference type v is at
least as well off when σ IA is played in Γ(IA) as when σDA is played in Γ(DA).

Part (1) of Proposition 1 examines the property of particular symmetric equi-
libria of Γ(IA), without establishing their existence (the existence of a symmetric
equilibrium follows from a standard argument). However, depending on the pa-
rameters of the model, Γ(IA) may not have such an equilibrium, in which case
part (1) of Proposition 1 is vacuous (if truth-telling is the unique equilibrium of
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Γ(IA), then each type of student receives the same payoff in Γ(IA) and Γ(DA),
and therefore, part (2) of Proposition 1 is not so meaningful, either). We demon-
strate this point with the following example.

Example 1. There are three schools, each with unit capacity, and three students.
Let ε ∈ (0, 1

4). Let v1 ≡ (1,ε,0) and v2 ≡ (1,2ε,0). Let V = {v1,v2} be the
preference type space. Each student can be type v1 or v2 with equal probabil-
ity; i.e., f (v1) = f (v2) = 1

2 . Also, he can be either naı̈ve or strategic with the
same probability; i.e., α = 1

2 . As shown in Section 4, truth-telling is the unique
equilibrium (symmetric or not) of Γ(IA), and therefore, part (1) of Proposition 1
does not apply. 4

The main reason why no strategic type manipulates in Example 1 is that the
preference type space V is too coarse, so that for any preference type, the dif-
ference between the vNM indices attached to schools 1 and 2 is large enough.
Thus, a strategic student never finds it profitable to rank school 2 above school 1.
Generalizing this observation, we now define a condition that guarantees the ex-
istence of an equilibrium of Γ(IA) such that some strategic student manipulates
with positive probability.

Definition. The preference type space V is rich if there are v∈V and a∈ A such
that

va+1 >
qa

qa +qa+1 + · · ·+qm
va+

qa+1

qa +qa+1 + · · ·+qm
va+1+· · ·+

qm

qa +qa+1 + · · ·+qm
vm.

(1)

To illustrate the richness condition, suppose that there are four schools; i.e.,
A = {1,2,3,4}. Then V is rich if there is v ∈V such that

v2 >
q1

n
v1 +

q2

n
v2 +

q3

n
v3 +

q4

n
v4; or

v3 >
q2

q2 +q3 +q4
v2 +

q3

q2 +q3 +q4
v3 +

q4

q2 +q3 +q4
v4.

These inequalities can be interpreted as follows. Compute a weighted average
of vNM indices for the schools, where the weights are relative capacities (the
righthand side of the first inequality). If the index attached to school 2, the
second most preferred school, is larger than the weighted average, then V is rich.
Otherwise, consider schools 2, 3, and 4. Compute a similar weighted average
of vNM indices for these schools, where the weights are relative capacities with
respect to the three schools only (the righthand side of the second inequality). If
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the index attached to school 3, the second most preferred school among the three
schools, is larger than the weighted average, then V is rich. Loosely speaking,
if V consists of diverse preferences, so that some preference type values two
schools with adjacent rankings quite closely, then V is rich.

Richness, we believe, is a mild requirement on the preference type space,
especially in light of the realistic aspect of school choice problems: while stu-
dents may agree on the rankings of schools, the relative intensities of their vNM
preferences tend to vary greatly. Yet, as the following theorem shows, richness is
sufficient and necessary for each symmetric equilibrium of Γ(IA) to have some
strategic student manipulating with positive probability.

Theorem 1. If the preference type space V is rich, then in each symmetric equi-
librium of Γ(IA), some strategic student misrepresents his preferences with pos-
itive probability. The converse also holds.

Proof. Assume that V is rich. Suppose, by contradiction, that there is a sym-
metric equilibrium σ IA of Γ(IA) such that each strategic student reports his pref-
erences truthfully with probability 1. When σ IA is played, each type of student
submits the same preferences. Let v ∈V and a ∈ A satisfy Inequality (1). Since
all ties are broken randomly, the payoff to a strategic student of preference type
v is ∑b∈A

qb
n vb. Now suppose that the student reports the preferences that are the

same as his true preferences, except that the rankings of schools a and a+1 are
switched. Then his payoff is

q1

n
v1 + · · ·+

qa−1

n
va−1 +

n−q1−·· ·−qa−1

n
va+1,

which exceeds the equilibrium payoff ∑b∈A
qb
n vb, a contradiction.

Next, to prove the converse, we prove its contrapositive. Suppose that V is
not rich. Let σ be the truth-telling strategy profile; i.e., for each i ∈ N and each
v ∈ V , strategic student i of preference type v reports his preferences truthfully.
The proof is complete if we show that σ is an equilibrium. Let i ∈ N and v ∈
V . When σ is played, the payoff to strategic student i of preference type v is
∑a∈A

qa
n va. As shown below, this is an upper bound to all the payoffs student i of

preference type v can get by reporting any other preferences.
Suppose that student i of preference type v ranks school b ∈ A\{1} first.

Because all the other students report truthfully, he is assigned to school b with
probability 1, getting payoff vb, which cannot exceed v2. But because Inequal-
ity (1) is violated for school b, v2 ≤ ∑a∈A

qa
n va. Thus, student i of preference

type v cannot profitably deviate by top-ranking any school other than school 1.
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Suppose that student i of preference type v ranks school 1 first and school b∈
A\{1,2} second. Again, because all the other students report truthfully, he is
assigned to school 1 with probability q1

n and to school b with probability 1− q1
n ,

getting payoff q1
n v1 +

(
1− q1

n

)
vb, which cannot exceed q1

n v1 +
(
1− q1

n

)
v3 (since

vb ≤ v3). But because Inequality (1) is violated for school b, q1
n v1+

(
1− q1

n

)
v3 ≤

∑a∈A
qa
n va. Thus, student i of preference type v cannot profitably deviate by

ranking school 1 first and any school other than school 2 second.
Clearly, the above argument can be repeated to show: ranking school 1

first, school 2 second, and school b ∈ A\{1,2,3} third is not profitable; rank-
ing school 1 first, school 2 second, school 3 third, and school b ∈ A\{1,2,3,4}
fourth is not profitable; and so on. Thus, σ is an equilibrium.

Part (2) of Proposition 1 compares the welfare of naı̈ve students under the
IA and DA mechanisms, only for those preference types that report truthfully
even when they are strategic. However, it may very well be the case that as a
consequence of manipulation by strategic students, other naı̈ve students are, in
fact, worse off under the IA mechanism than under the DA mechanism.4 We
illustrate this possibility with the following example.

Example 2. Consider Example 1, with the modification that ε ∈
( 5

14 ,
1
2

)
. Let σ IA

be the strategy profile such that (i) each strategic student of preference type v1

reports his preferences truthfully; and (ii) each strategic student of preference
type v2 reports the preferences that rank school 2 first, school 1 second, and
school 3 third. It is easy to check that σ IA is an equilibrium of Γ(IA). Now, for
each (v,k) ∈V ×{0,1}, let U IA

(v,k) be the interim payoff to a student of type (v,k)

when σ IA is played in Γ(IA). Then U IA
(v1,0) =U IA

(v1,1) =
7+3ε

16 , U IA
(v2,0) =

7+6ε

16 , and

U IA
(v2,1) =

1+74ε

48 .

Now let σDA be the dominant strategy, truth-telling equilibrium of Γ(DA).
For each (v,k) ∈ V ×{0,1}, let UDA

(v,k) be the interim payoff to a student of type
(v,k) when σDA is played in Γ(DA). Then UDA

(v1,0) = UDA
(v1,1) =

1+ε

3 and UDA
(v2,0) =

UDA
(v2,1) =

1+2ε

3 . Note that 7+3ε

16 > 1+ε

3 and 1+74ε

48 > 1+2ε

3 > 7+6ε

16 . Therefore, naı̈ve
students of preference type v2 are worse off when σ IA is played in Γ(IA) than
when σDA is played in Γ(DA); and the opposite is true for students of all other
types. 4

4One cannot use the example in ACY (p. 407) to make this point because it does not fit with the
model. Students are not symmetric in the example, with some students always naı̈ve and others
always strategic. In the model, students are fully symmetric, which makes it compelling to focus
on symmetric equilibria.
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Remark 1. The observation in Example 2 can be generalized.5 In a setup with
three students and three schools (each with unit capacity), normalize, without
loss of generality, the preference type space V so that for each v ∈ V , v1 = 1
and v3 = 0. Let V = {v1,v2}, where v1 ≡ (1, t1,0) and v2 ≡ (1, t2,0), with t1 <
t2 (thus, students of preference type v2 has stronger preferences for school 2
than students of preference type v1). Let σ IA be the strategy profile in which
only strategic students of preference type v2 manipulates, ranking school 2 first,
school 1 second, and school 3 third. It can be shown that if t1 < 5

7 < t2, (i) σ IA is
an equilibrium of Γ(IA); and (ii) naı̈ve students of preference type v2 are worse
off when σ IA is played in Γ(IA) than when σDA (truth-telling equilibrium) is
played in Γ(DA). Therefore, some naı̈ve students suffer due to the presence of
strategic students.6

This three-student, three-school argument can be embedded in an environ-
ment with arbitrary numbers of students, schools, and capacities. Consider the
preference type space V consisting of v’s such that v=(δ m−3,δ m−2, · · · ,δ ,1, t,0),
where δ > 1. For each v ∈V , the ratio of vNM indices for two schools with ad-
jacent rankings is δ . Thus, as δ → ∞, all students, naı̈ve and strategic, truthfully
report their preferences over the top m−3 schools in any equilibrium of Γ(IA).
Thus, welfare consequences of equilibria in the IA and DA games rely only on
how students rank the bottom 3 schools in the IA game. To analyze the latter
behavior, we can use the three-student, three-school argument above. 4

4. UNIQUENESS OF AN EQUILIBRIUM IN EXAMPLE 1

In this section, we prove that truth-telling is the unique equilibrium of the
game Γ(IA) specified in Example 1. First, denote by “abc” the preferences that
rank school a first, school b second, and school c third. Let σ ≡ (σi)i∈N be an
equilibrium of Γ(IA) (σ may not be symmetric). Without loss of generality, we
show that when students 2 and 3 play (σ2,σ3), it is optimal for student 1 to report
his preferences truthfully whatever his type is.

Step 1: For each i ∈ N and each (v,1) ∈V ×{0,1}, σi assigns zero probability
to student i of type (v,1) reporting any of the preferences 132, 231, 312, and 321.

Suppose, by contradiction, that there are i ∈ N and (v,1) ∈ V ×{0,1} such

5I thank an anonymous referee for encouraging me to explore this direction.
6Nevertheless, in this example, students’ ex ante payoffs (i.e., social welfare) is higher in the

IA game than in the DA game. When σ IA is played in Γ(IA), each student receives an ex ante
payoff of 1

96 (9t1 +23t2 +32); when truth-telling is played in Γ(DA), each student receives an ex
ante payoff of 1

6 (t1 + t2 +2). Since t1 < t2, 1
96 (9t1 +23t2 +32)> 1

6 (t1 + t2 +2).
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that student i of type (v,1) reports 132 with positive probability. It is clear that
reporting 123 weakly dominates reporting 132 for student i of type (v,1). Sup-
pose that he plays an action that is the same as σi(v,1), except that it prescribes
reporting 123 whenever σi(v,1) prescribes reporting 132. Since the students in
N\{i} report (123,123) with at least probability 1

4 , this latter action increases
the interim payoff to type (v,1), a contradiction.

Similarly, using the fact that (i) reporting 132 weakly dominates reporting
312; and (ii) reporting 231 weakly dominates reporting 321, we can show that
312 and 321 are reported with zero probability in σ .

Suppose, by contradiction, that there are i ∈ N and (v,1) ∈ V ×{0,1} such
that student i of type (v,1) reports 231 with positive probability. It is clear that
reporting 213 weakly dominates reporting 231 for student i of type (v,1). If any
of the students in N\{i} reports 213 or 231 with positive probability, then the
action that replaces 231 by 213 in σi(v,1) gives a higher interim payoff than
σi(v,1) does, a contradiction. Thus, each student in N\{i} reports each of the
preferences 213 and 231 with zero probability. Moreover, by the arguments in
the previous paragraphs, each student in N\{i} reports each of the preferences
132, 312, and 321 with zero probability. This means that the students in N\{i}
report (123,123) with probability 1, in which case, by our choice of ε , student i
of type (v,1) is better off reporting 123 with probability 1 than playing σi(v,1),
a contradiction.

Step 2: For each (v,1) ∈ V ×{0,1}, student 1 of type (v,1) reports 123 with
probability 1.

To simplify notation, for each i ∈ N and each k ∈ {1,2}, let pik be the prob-
ability that student i of type (vk,1) reports 123 when σi is played. Then 1− pik
is the probability that student i of type (vk,1) reports 213 when σi is played. To
compute the interim payoff to student 1 of type (v2,1) when σ is played, we
distinguish nine cases, depending on the types of students 2 and 3 he faces.

Case 1: The type profile for students 2 and 3 is one of
(
(v1,0),(v1,0)

)
,(

(v1,0),(v2,0)
)
,
(
(v2,0),(v1,0)

)
, and

(
(v2,0),(v2,0)

)
.

This case occurs with probability 1
4 and the payoff to student 1 of type (v2,1)

is

U11 ≡
1+2ε

3
p12 +2ε(1− p12).

Case 2: The type profile for students 2 and 3 is one of
(
(v1,0),(v1,1)

)
and(

(v2,0),(v1,1)
)
.
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This case occurs with probability 1
8 and the payoff to student 1 of type (v2,1)

is

U12 ≡ p12

[
1+2ε

3
p31 +

1
2
(1− p31)

]
+(1− p12) [2ε p31 + ε(1− p31)] .

Case 3: The type profile for students 2 and 3 is one of
(
(v1,0),(v2,1)

)
and(

(v2,0),(v2,1)
)
.

This case occurs with probability 1
8 and is similar to Case 2. Replacing p31

by p32 in the definition of U12, we obtain the payoff to student 1 of type (v2,1),
U13.

Case 4: The type profile for students 2 and 3 is one of
(
(v1,1),(v1,0)

)
and(

(v1,1),(v2,0)
)
.

This case occurs with probability 1
8 and is similar to Case 2. Replacing p31

by p21 in the definition of U12, we obtain the payoff to student 1 of type (v2,1),
U14.

Case 5: The type profile for students 2 and 3 is
(
(v1,1),(v1,1)

)
.

This case occurs with probability 1
16 and the payoff to student 1 of type (v2,1)

is

U15 ≡ p12

[
1+2ε

3
p21 p31 +

1
2

p21(1− p31)+
1
2
(1− p21)p31 +(1− p21)(1− p31)

]
+(1− p12)

[
2ε p21 p31 + ε p21(1− p31)+ ε(1− p21)p31

+
1+2ε

3
(1− p21)(1− p31)

]
.

Case 6: The type profile for students 2 and 3 is
(
(v1,1),(v2,1)

)
.

This case occurs with probability 1
16 and is similar to Case 5. Replacing p31

by p32 in the definition of U15, we obtain the payoff to student 1 of type (v2,1),
U16.

Case 7: The type profile for students 2 and 3 is one of
(
(v2,1),(v1,0)

)
and(

(v2,1),(v2,0)
)
.

This case occurs with probability 1
8 and is similar to Case 2. Replacing p31

by p22 in the definition of U12, we obtain the payoff to student 1 of type (v2,1),
U17.

Case 8: The type profile for students 2 and 3 is
(
(v2,1),(v1,1)

)
.
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This case occurs with probability 1
16 and is similar to Case 5. Replacing p21

by p22 in the definition of U15, we obtain we obtain the payoff to student 1 of
type (v2,1), U18.

Case 9: The type profile for students 2 and 3 is
(
(v2,1),(v2,1)

)
.

This case occurs with probability 1
16 and is similar to Case 5. Replacing p21

by p22 and p31 by p32 in the definition of U15, we obtain we obtain the payoff to
student 1 of type (v2,1), U19.

Therefore, when σ is played, the interim payoff to student 1 of type (v2,1)
is

U1≡
1
4

U11+
1
8

U12+
1
8

U13+
1
8

U14+
1
16

U15+
1
16

U16+
1
8

U17+
1
16

U18+
1
16

U16.

Simple calculation shows that the coefficient on p12 in U1 is

1
24

[12−24ε− (p21 + p22 + p31 + p32)(1+2ε)] .

Since ε ∈ (0, 1
4), the coefficient is positive. Since σ1 is a best response to (σ2,σ3),

it follows that p12 = 1; i.e., student 1 of type (v2,1) reports his preferences truth-
fully with probability 1.

We can repeat the above computation for student 1 of type (v1,1). Denote
the resulting payoff by Û1.7 Then the coefficient on p11 in Û1 is

1
24

[12−12ε− (p21 + p22 + p31 + p32)(1+ ε)] ,

which is positive. Thus, p11 = 1; i.e., student 1 of type (v1,1) reports his prefer-
ences truthfully with probability 1.

7To obtain Û1, we can replace p12 by p11 and ε by 1
2 ε in the preceding argument.
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