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Abstract We study long-run comovement of the nonstationary time series

variables with a focus on the use of coherency, defined as the long-run dynamic

correlation. We pay attention to the effect of specification of trends on the long-

run correlations by analyzing the cases that the data are either correctly or incor-

rectly detrended. Our simulation studies show that when the true process is trend

stationary, time-removed long-run correlation estimates perform well, whereas

the differenced case fails to generate valid outcomes due to degeneracy of the

spectrums at the zero frequency of the series. We also provide empirical appli-

cations using unemployment rates of major cities in Korea from 1999 to 2016,

and exemplify that false detrending could lead to nocuous outcomes. This work

brings attention to correct specification of trends in nonstationary economic data

in practice.
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1.INTRODUCTION

It has been fundamental and long-standing issue to correctly specify the

trends in most of nonstationary time series (Nelson and Kang, 1981; Nelson and

Plosser, 1982; Perron, 1989; Murray and Nelson, 2000, Perron and Wada, 2009,

to name a few). As widely known in time series econometrics, the series having

a stochastic trend is widely known as an integrated process with a possible drift,

whereas the series with a deterministic trend consists of a stationary components

around a time trend. As is well known, it is hard to distinguish the two differ-

ent types of trends due to inevitably low power of conventional unit root tests

including Augmented Dickey-Fuller(ADF) test, the LM test by Kwiatkowski et

al(1992; KPSS hereafter) and so on.

Given this, one is often vulnerable to misspecification of trends in practice.

Nelson and Kang(1981) analyze the effect of inappropriately detrended series on

the behavior of spectrums in the low and high frequency in the context of long-

established business cycle literatures. Recently, Dagum and Giannerini(2006),

among others, analyze the effects of misspecification of trends on certain hy-

pothesis tests-stationarity tests and nonlinearity tests. Through a large set of

simulation studies, they found that false detrending severely impact the perfor-

mance of the tests(e.g., size of the tests). Also, Ashley and Verbrugge(2006) also

study the effects of false detrending on the parameter estimates in linear models.

These findings reminds the importance of correct detrending in understanding

the true dynamics of the nonstationary time series variables.

In this work, we study effects of detrending on the measure of comovement

between the nonstationary time series. In doing so, we employ dynamic cor-

relation(DC) measure proposed by Croux et al(2001) as an useful comovement

measure. The DC is basically the real part of coherency, where the coherency is

the widely-used correlation coefficient in the frequency domain. While the DC

provides correlation at any frequency, we restrict our attention to the long-run

comovement, say, the long-run DC(LDC), which is the value of the DC at the

zero frequency. Croux et al(2008) deal with the relationship between the LDC

and cointegration. Conversely, if the true processes are indeed trend station-
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ary rather than random walks with a possible drift, it is underemphasized how

false detrending affects the LDC. We formally study the behavior of the LDC

by correct and incorrect detrending, together with linear structures of innovation

processes of the trended variables.

We perform a small set of simulation studies to see the effects of detrending

on the LDC measures. Through this simulation studies, it is expected to know

the cost of misspecification of trends. We also conduct a short empirical appli-

cation. In doing so, we use monthly unemployment rates of seven major cities in

Korea from June 1999 to December, 2016. The ADF test results indicate that the

unit root hypothesis is rather strongly rejected with a very few exception in the

autoregressive model with a possible drift term. The linear time trend is found

to be highly significant for all the cities. Given this finding, we compute the

LDC using two different detrending-time removal detrending and first differenc-

ing. The current works continue to study the short-run comovements of the time

series variables using the dynamic correlations at the high frequencies. Thus, it

is closely related to identification of periodicity of the comovements in terms of

long-established business cycle literature.

2. STOCHASTIC OR DETERMINISTIC TRENDS FOR LONG-RUN
DYNAMIC CORRELATIONS

2.1. LONG-RUN DYNAMIC CORRELATION

The dynamic correlation, proposed by Croux et al(2001) is simply the real

part of the coherency between the two covariance stationary processes x and y. It

is regarded as the correlation measure in the frequency domain. As interestingly

motivated in their work, the dynamic correlation provides an useful comovement

measure, given by

ρx,y(λ ) =
fxy(λ )√

fx(λ ) fy(λ )
, for λ ∈ [−π,π], (1)
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where fxy(λ ) is the real part of the cross spectral density, called as cospec-

trum, fx(λ ) and fy(λ ) denote the auto spectrum densities of x and y, respec-

tively(Priestley, 1981). As the dynamic correlation in (1) is represented in the

frequency domain, it can provide different implications from correlations de-

fined in the time domain. Thus, unlike correlations between two different time

points, the dynamic correlations measure frequency-based correlations of the

two variables, say, short-run, medium-run or long-run correlations(Croux et al,

2001).

In this paper, we restrict our attention to the long-run relationship by fix-

ing the frequency equal to zero, where the zero-frequency quantity refers to the

sum of all the correlations between the two variables. The long-run dynamic

correlation(LDC hereafter) is given by

ρxy(0) =
fxy(0)√

fx(0) fy(0)
, (2)

where cross and auto spectral densities at the origin are defined by

fxy(0) = ∑
∞
j=−∞ Rxy( j) (3)

fx(0) = ∑
∞
j=−∞ Rx( j), fy(0) = ∑

∞
j=−∞ Ry( j),

and Rxy( j),Rx( j), and Ry( j) be the autocovariance between x and y, auto-covariances

of x and y at the j-th lags, respectively. Note that in the cross-spectral density

function, the cross covariances Rxy( j) and Rxy(− j) are not equal. Besides, the

usual constant factor 2π or (2π)1/2 in the definitions (2) is unnecessary, thus is

omitted.

The relationship between the LDC and cointegration was studied in Croux

et al(2001). It is summarized as follows. Let integrated series including random

walk with a drift be st and dt . Then, for the first-differenced series xt = ∆st ,yt =

∆dt , if the two series are cointegrated, the LDC equals to 1 or -1, thereby the

squared LDC equals to 1. We can also provide additional explanation based on

spectral representations(Priestley, 1981, ch.9). If the two series are cointegrated,

then st−βdt = α +θ t+ε t ,where non-zero β is a cointegrating parameter and ε t
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is covariance stationary error. Then, fxy(0) = β fy(0) and fx(0) = β
2 fy(0), where

fxy(0), fx(0), fy(0) denote the cross-spectral density, auto spectral densities of x

and y, respectively. Then, the squared LDC equal to one.

On the other hand, the behavior of the LDC is unknown in the presence of

misspecification of trends. In other words, if the true series are trend station-

ary, then detrending by first-differencing is incorrect, whereas correct detrend-

ing comes from removal of the deterministic time trend component from the

underlying nonstationary variables. Below, we analyze the effects of correct and

incorrect detrending on the behavior of the LDC.

2.2. CORRECT DETRENDING

Suppose the true data generating processes consist of stationary components

around the deterministic time trend. Stationary fluctuations are allowed to have

a general linear structures, as in Phillips and Solo(1992). Formally, we put the

following assumption.

Assumption 1: Bivariate series zt and wt follow trend stationary processes,

(i) zt = a+bt + et , wt = c+dt +ut ,

where the innovations η t = (et ,ut)
′ be the linear processes given by

(ii) η t = φ(L)ε t = ∑
∞
j=0 φ jε t− j =

(
φ

1(L)

φ
2(L)

)
ε t ,

∑
∞
j=0 j||φ j|| < ∞, for ||φ j||= [∑n ∑

m
|φ j(n,m)|p]1/p, p≥ 1,

detφ(z) 6= 0 for all |z| ≤ 1.

where φ
1(L),φ 2(L) be the first and second row of φ(L) matrix and ε t =(ε1t ,ε2t)

′

be iid with E(ε1t) = E(ε2t) = 0 and E(ε2
1t) = σ2

1 > 0,E(ε2
2t) = σ2

2 > 0.

The linear structure of innovations is standard condition for linear processes,

in relation to the law of large numbers or asymptotic normality, etc. See Phillips
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and Solo(1992) for modification of linear structures.

Under the linear structure of the innovations, we can derive the explicit form

of the LDC, as follows.

Theorem 1: Under the assumption 1, the long-run dynamic correlation

equals to

ρxy(0) =
D√

C1C2
,

where

D = ∑
∞
j=−∞

(
∑

∞
k=0 φ

11
k φ

21
k− jσ

2
1 +∑

∞
k=0 φ

12
k φ

22
k− jσ

2
2
)
,

C1 = ∑
∞
j=−∞

(
∑

∞
k=0 φ

11
k φ

11
k− jσ

2
1 +∑

∞
k=0 φ

12
k φ

12
k− jσ

2
2
)

C2 = ∑
∞
j=−∞

(
∑

∞
k=0 φ

21
k φ

21
k− jσ

2
1 +∑

∞
k=0 φ

22
k φ

22
k− jσ

2
2
)
.

[proof] The proof is based on Phillips and Solo(1992, eq.28) and May-

nard and Shimotsu(2009). First, for the fx(0) and fy(0), we write φ
1(L) =

(φ 11(L),φ 12(L)). Then

Rx( j) = ∑
∞
k=0 φ

11
k φ

11
k− jσ

2
1 +∑

∞
k=0 φ

12
k φ

12
k− jσ

2
2 =C11

j (1)σ2
1 +C12

j (1)σ2
2,

where C11
j (L) = ∑

∞
k=0 φ

11
k φ

11
k− jL

k with the lag operator L, and σ2
1 = σ2

[1,1], σ2
2 =

σ2
[2,2]. Similarly, we obtain

Ry( j) =C21
j (1)σ2

1 +C22
j (1)σ2

2,

where C21
j (L)=∑

∞
k=0 φ

21
k φ

21
k− jL

k. It follows that fx(0)=∑
∞
j=−∞ Rx( j)=C11(1)σ2

1+

C12(1)σ2
2, where C11 = ∑

∞
j=−∞C11

j and C12 = ∑
∞
j=−∞C12

j . Likewise, fy(0) =

C21(1)σ2
1+C22(1)σ2

2. Next, for the cospectrum, we use Maynard and Shimotsu(2009,
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lemma 13) to get

Rxy( j) = tr[∑∞
k=0(φ

1
k)
′
φ

2
k− jσ

2]

= ∑
∞
k=0 φ

11
k φ

21
k− jσ

2
1 +∑

∞
k=0 φ

12
k φ

22
k− jσ

2
2

= D1
jσ

2
1 +D2

jσ
2
2.

Thus, the numerator of the LDC equals to fxy(0) = D1(1)σ2
1 +D2(1)σ2

2, where

D1 = ∑
∞
j=−∞ D1

j and D2 = ∑
∞
j=−∞ D2

j .

In relation to the Theorem1, we provide several remarks.

Remarks 1. The LDC of trend stationary processes depends on the mag-

nitude of correlation between the innovations, given by the structure of the φ

matrix.

Remarks 2. If the two innovations are uncorrelated, then the LDC ρxy(0) =

0, as is well expected. When et and ut are uncorrelated, then the φ(L) becomes

a diagonal matrix, where φ
12
k = φ

21
k = 0 for k = 0,±1,±2, ... Thus, in is inferred

that D1
j = D2

j = 0, which leads to fxy(0) = 0 as well as ρxy(0) = 0.

2.3. INCORRECT DETRENDING

Next, we turn to the effect of inappropriate detrending. In time series con-

text, Nelson and Kang(1981), among others, analyze the effect of false detrend-

ing when the true process is a random walk. They compare the behavior of

autocorrelations and sample spectrum both in the low and high frequencies and

show that incorrectly detrended variables cause misleading inferences including

spurious periodic patterns in the data.

In this work, we pay attention to the possibility that trend stationary series

are inappropriately first-differenced, which is the converse case of Nelson and

Kang(1981). This phenomenon is well known as the moving average(MA) unit

root(e.g., Saikkonen and Luukkonen, 1993). Also, in the view of frequency do-

main approach, the MA unit roots cause the spectral density of the series at the

origin to become zero(Lee, 2010), in other words, fx(0) = 0 or fy(0) = 0 or both.
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For example, since xt = ∆et , we compute Rx(0) = 2σ2, Rx(1) = Rx(−1) =−σ2,

and Rx( j) = 0, for | j|> 1. Then, fx(0) = 0. Then, by Cauchy-Schwarz inequal-

ity, f 2
xy(0)≤ fx(0) fy(0), the cospectrum fxy(0) becomes zero. It follows that the

LDC defined as in (2) takes indeterminate form as it takes the ratio of zero to

zero. Thus, the LDC is invalid in the case of false detrending. We here note

that the inference is extendable to the multivariate case of the cohesion measure,

which is weighted dynamic correlations, proposed by Croux et al(2001). If some

of the LDCs are invalid due to degeneracy, then the cohesion become also inval-

idated. Our empirical examples below clearly show the misleading outcome due

to false detrending of the trend stationary variables.

As a digression, we analyze the squared LDC at the zero frequency, under

degeneracy of spectrums, by the repeated use of L’Hospital’s rule,

squared LDC(λ ) =
[ f ′′xy(0)]

2

f ′′x (0) f ′′y (0),
, for λ → 0, (4)

where the second derivatives of cross and auto spectrum at the zero frequency

are assumed to be strictly positive. Note that the second derivatives are closely

related to the smoothness of the spectral density function at the origin, where

the second derivative as f ′′x (0) = −∑
∞
j=−∞ | j|2Rx( j), (Andrews, 1991). Other

quantities f ′′y (0) and f ′′xy(0) are similarly defined. We note that estimation of

the second derivatives involving sample variance times squared lags tends to be

much more sensitive to the choice of lag truncation numbers than estimation of

spectrum itself.

2.4. ESTIMATION OF LONG-RUN DYNAMIC CORRELATIONS

The LDC are estimable by conventional nonparametric estimation of spectral

densities. For the auto-spectral densities of x and y, we have

f̂x(0) = R̂x(0)+2∑
T−1
j=1 k( j/M)R̂x( j), f̂y(0) = R̂y(0)+2∑

T−1
j=1 k( j/M)R̂y( j),

(5)
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where k is a kernel function, M is the lag truncation number and the sample

variances are given by

R̂x( j)= T−1
∑

T
t=| j|+1(xt−x)(xt−| j|−x), R̂y( j)= T−1

∑
T
t=| j|+1(yt−y)(yt−| j|−y),

and x,y are the sample means of x and y. The cospectrum estimator is given by

f̂xy(0) = ∑
T−1
j=1−T k( j/M)R̂xy( j) (6)

= R̂xy(0)+∑
T−1
j=1 k( j/M)R̂xy( j)+∑

T−1
j=1 k( j/M)R̂xy(− j),

where the sample cross covariance is equal to

R̂xy( j) = T−1
∑

T
t=| j|+1(xt − x)(yt−| j|− y),

and cross covariance is not symmetric in j.

One can use various types of kernel functions such as truncated, Bartlett,

Gaussian, Quadratic spectral kernels, etc. The bandwidth M needs to be chosen

to satisfy the condition that M→∞ and M/T → 0, which guarantees consistency

of the kernel-based estimators(e.g., Priestley, 1981, Andrews 1991, Newey and

West 1994). However, we do not further a discussion for the bandwidth selec-

tion in detail, as it belongs to context of heteroskedasticity and autocorrelation

consistent (HAC) covariance estimation which deviates from the focus of our

work.

3. SIMULATION STUDIES

In this section, we conduct a small set of Monte Carlo simulations to see the

effect of correct and incorrect detrending on the LDC. In doing so, we consider a

linear time trend process as the data generating process. Let Qt = (xt ,yt)
′
follow

Qt = α +β t +η t , (7)



58
LONG-RUN DYNAMIC CORRELATION OF NONSTATIONARY VARIABLES

WHEN THE TRENDS ARE MISSPECIFIED

where α = (α1,α2)
′,β = (β 1,β 2)

′, and η t = (et ,ut)
′, where each comes from

N(0,1), with E(et) = E(ut) = 0,E(etut) = σ eu and E(etus) = 0 for t 6= s.

Correlation of innovations σ eu are set from -0.5 to 0.5. Also, we set α =

0, and β = 0.1 without loss of generality. The true LDC value, after correct

detrending, ρxy(0) = fxy(0)[ fx(0) fy(0)]−1/2 = σ eu. The sample sizes T = 200

and 500 are considered. We run 1,000 iterations to compute the mean squared

error(MSE) as well as the sample mean of the LDC estimates. For estimation of

the LDC, truncated kernel is used for simplicity. Bartlett kernels yielded similar

results, though. The lag truncation number is selected by the proposed method in

Newey and West(1994), where M = [4(T/100)2/9], and [z] is the closest integer

to z. This choice of lag truncation ensure the consistency of the estimator as the

bandwidth grows at a slower rate than the sample size and, most importantly, is

easy to implement. For reference, Croux et al(2001) chose fixed bandwidth.

As stated above, false detrending of differencing causes degenerate values of

the denominators in the LDC, thus it fails to produce real-valued LDC as much

as about 50% out of 1,000 replications in the simulations. Thus, we only report

the MSE and average LDC values by correct detrending of time removal in the

Table 1. It is found that the nonparametric estimates of the LDC performs quite

well in terms of the bias(difference between the average LDC value and the true

value) of the LDC estimates. The MSE is reduced almost by half as the sample

size increase to 500, where the bias remains nearly unaffected. This result is

expected since the bias of the spectral density estimator at the zero frequency

only depends on the bandwidth, whereas the variance decreases with the sample

size(e.g., Andrews, 1991).

4. EMPIRICAL STUDIES

We apply the inference to the real data. For a good candidate of a deter-

ministic trend process, we choose monthly unemployment rates of major seven

cities in Korea- Seoul, Busan, Incheon, Daejeon, Daegu, Gwangju and Ulsan,

from June 1999 to December 2016. Data is obtained from Korean Statistical In-

formation Service(KOSIS). As a preliminary work, we conducted the unit root
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tests. The table 2(a) reports the test results of stationarity for the series. We con-

sider augmented Dickey-Fuller(ADF) test and the nonparametric variance ratio

test proposed by Breitung(2002). The ADF test values are obtained in the AR

model with the linear trend. For whitening the residuals, 3 to 9 lags of the first

differenced series are allowed. The unit root hypothesis is clearly rejected at the

5% significance level, except for several cases. Next, we conducted the variance

ratio test, defined as the ratio of T−2
∑ Ŝ2

t and ∑ û2
t , where ût is the residual from

a regression of the series on an intercept and a linear time trend and Ŝt is the

partial sums, Ŝt = û1 + û2 + ...+ ût . The test has nonstandard limit distribution

with the null hypothesis of unit roots(I(1)). The left-tailed critical values are

given through simulations by Breitung(2002). It is found that the unit root hy-

pothesis is rejected at the 5% level for Seoul, Daejeon, Daegu and Ulsan. On the

other hand, the case of Busan supports the unit root hypothesis, and the case of

Gwangju seems a bit ambiguous.

In sum, these test results imply that the unemployment rate of the major city

is likely to be trend stationary process, though there exists a few exceptions.

This finding is different from Kim et al(2012), who present the evidence for

difference stationarity for the unemployment rates during 1994 and 2002. In an

subsequent analysis, the table 2(b) shows the t-test values for the hypothesis of

the linear time trend term is zero. It unexceptionally shows that the linear trend

is significant at the 5% level, where the slightly downward sloping time trend

is found during the given sample period. Besides, as a possible limitation in

this empirical work, we do not explicitly deal with the issue of seasonality in

our analysis. If we extend the analysis from the long-run to short-run dynamic

correlations, then the issue of seasonality draws a good deal of attention. We

leave this a future research topic.

Next, the table 3 provides the estimated LDC values based on correctly de-

trended and incorrectly differenced series. The LDC and its squared values be-

tween Seoul and other six cities are reported. If the series are correctly detrended

by time removal, the LDC shows around 0.6 to 0.7, except for the case between

Seoul and Incheon, whose LDC amounts to about 0.9. A possible reason that

a high degree of long-run correlations between Seoul and Incheon could come



60
LONG-RUN DYNAMIC CORRELATION OF NONSTATIONARY VARIABLES

WHEN THE TRENDS ARE MISSPECIFIED

from proximity in distance. On the other hand, if the series are differenced, then

the LDC generates nonsensical values, where many LDC values exceed one.

The LDC between Seoul and Daejeon is even undefined, as computation fails

to generate real values. As theoretically analyzed above, this result comes from

degeneracy of the auto-spectrum at the origin of the data. In turn, the empirical

finding could support that the unemployment rate follows a trend stationary pro-

cess. In sum, our empirical results provide a clear example how false detrending

affects the long-run comovement measure in practice.

5. CONCLUSION

We study long-run comovement of the nonstationary time series variables

with a focus on the concept of coherency defined as the long-run dynamic cor-

relation. We particularly focus on the effect of mis-specification of trends on the

long-run correlation measure by analyzing the cases between correct detrending

and incorrect detrending. Simulation studies show that when the true process

is trend stationary, time-detrended LDC performs well, whereas the differenced

LDC fails to generate valid outcomes due to degeneracy of the spectral densities

at the zero frequency of the series. As for empirical applications, we estimate

the long-run correlation between unemployment rate between Seoul and major

cities in Korea. It is found that the unemployment rates turn out to be trend sta-

tionary during the period from 1999 to 2016. Detrending of time removal yields

the reasonable LDC estimates, whereas first differencing yield invalid LDC esti-

mates, which often exceed unity. Thus, it gives an example that false detrending

could lead to nocuous results. This work bring attention to correct specification

of trends in nonstationary data in terms of statistical adequacy.

Inferences given in this work could extend to related research works. One di-

rection includes an extension of inferences to analysis of short-run comovement

of the dynamic correlations at high frequencies. It would be useful to investigate

how the detrending procedures affect the comovement measures, particularly in

the short-run. Thus, it is closely related to correctly identify the periodicity of
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trended time series variables in terms of long-established literature on business

cycles.
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APPENDIX

Table 1. Mean Squared Errors(MSE) of the correctly detrended LDC Estimates
MSE \ values of σ eu 0 0.2 -0.2 0.5 -0.5

T = 200

Average LDC estimates -0.003 0.1937 -0.1943 0.4874 -0.4879

MSE 0.0509 0.0476 0.0477 0.0312 0.0321

T = 500

Average LDC estimates -0.0023 0.1932 -0.1974 0.4891 -0.4915

MSE 0.0243 0.0225 0.0228 0.0146 0.0147

(1) 1000 replications are conducted for the sample sizes T = 200 and 500.

(2) The LDC denotes the long-run dynamic correlation. The σ eu denote the

value of covariance of the innovations. (3) The LDC estimates are obtained

from truncated kernel-weighted periodograms where the bandwidth is chosen by

the method in Newey and West(1994).
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Table 3. Long-run dynamic correlations and its squared between Seoul and six

other major cities in Korea.
LDC (squared LDC) Correctly detrended Incorrectly Differenced

Seoul- Busan 0.6951 (0.4832) 1.8564 (3.4463)

Incheon 0.9049 (0.8188) 2.6666 (7.1106)

Daejeon 0.6193 (0.3835) undefined

Daegu 0.7783 (0.6057) 2.1511 (4.6272)

Gwangju 0.6982 (0.4874) 2.3977 (5.7191)

Ulsan 0.6307 (0.3978) 0.1328 (0.0176)
(1) Nonparametric estimates of LDC are computed as in sec.2.3.


