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1. INTRODUCTION

Attrition and nonresponse are potentially a serious problem in panel studies

(Baltagi, 2014). If nonresponse occurs randomly or depending on exogenous

variables, then the conventional estimation methods such as the within-group

and the first-difference regression using the full unbalanced panel data or a bal-

anced subset provide consistent estimators of population characteristics. But if

the nonresponse mechanism depends on incomplete endogenous variables, then

the available sample of unbalanced panels loses representativeness, and estima-

tors based on the unbalanced panel data or a balanced subset are inconsistent in

general.

When the exogenous variables are completely observed and nonresponse oc-

curs only in the dependent variable as most cross-sectional and panel sample-

selection studies consider, there are multiple methods of correcting the endoge-

nous sample-selection bias. The most popular one is probably Heckman’s (1976,

1979) bias-correction by augmenting the equation with the inverse Mills ratios

(IMR) in order to control for endogenous selectivity. Wooldridge (1995) ex-

tends this approach to panel data, and recently Han and Lee (2017) have derived

efficient estimators.

On the other hand, bias-correction is a challenging task due to lack of in-

formation if no variables are observed for the non-respondents. One possi-

ble method available for attrition in an ‘absorbing’ state (that is, when nonre-

spondents never return to the sample) is to specify the ‘response’ equation as

ait = I(πt0 + xit−1πt1 + vit > 0) with vit ∼ N(0,1) conditional on ait−1 = 1 and

xit−1, where xit−1 is a set of observed lagged exogenous variables, as oppposed

to the incomplete current exogenous variables (see Wooldridge, 2010). The key

point of using the lagged explanatory variables is that they are observed as long

as unit i was in the sample in the previous period no matter whether it drops

out of the sample at period t. This idea leads to a bias-corrected instrumental

variable (IV) estimation as explained in Section 2 later. Although this method

makes a guideline for correcting the attrition bias at least in some (limited) cases

(see Section 2), its nature as an IV estimation inevitably causes the resulting es-

timator to lose substantial efficiency in practice. In the present paper we verify

by experiments that efficiency loss by IV estimation can indeed be serious.

Though not much mentioned systematically in the econometric literature,

there exists another convenient and intuitive method. While the IV estimation

method collects information on the response mechanism using past observa-

tions of the explanatory variables in a particular way, we can also utilize past

information in panel data for filling in the missing exogenous variable values,
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after which the standard bias-correction methods (see, e.g., Wooldridge, 1995,

Rochina-Barrachina, 1999, and Han and Lee, 2017) are applied to the imputed

data. This method is referred to as ‘bias correction after imputation’ (BCI, here-

after) throughout the paper.

The main purpose of the present paper is to examine the usefulness of this

BCI approach for unbalanced panel data models. Although imputation inevitably

involves measurement error in the explanatory variables, thus introducing in-

consistency to estimators, we suspect that this bias is limited because only the

missing xit values are imputed, at least as long as the performance of imputa-

tion is reasonable. It would naturally be desirable to evaluate bias due to data-

imputation analytically, but achieving this goal looks rather challenging, if not

totally impossible. We thus employ the Monte Carlo experment method in this

study for the examination of BCI and for the comparison of various estimators,

while leaving algebraic analysis as an interesting future research topic.

To briefly summarize what is found in this study, the results are optimistic

to the BCI estimators especially when BCI is combined with the first-difference

(FD) estimation. The conventional uncorrected estimators (using the full unbal-

anced panel data or the maximal balanced subset) show substantial biases when

missing or attrition occurs endogenously, and efficiency loss by the IV bias-

correction methods can be serious. The BCI estimators applied to FD estimation

exhibit remarkable bias reduction among other considered estimators.

The rest of the paper is organized as follows. We introduce the model and

various estimators in Section 2. The estimators include the conventional bi-

ased estimators using the full unbalanced panel data or using the maximal bal-

anced subset, a few bias-corrected IV estimators, and the BCI estimators. The

IV and BCI estimation methods are considered for two alternative modes of

nonresponse. The first is the case where non-respondents return to the sam-

ple whenever they choose to. The second type is the ‘pure attrition’, in which

non-respondents never return and attrition is an absorbing state. Different as-

sumptions are made for the two attrition modes, and corresponding different

estimators are derived in Section 2. Section 3 reports experiment results and

implications are discussed. Section 4 concludes.

2. MODELS AND ESTIMATORS

The linear panel data model we consider is

yit = αi +xitβ +uit , i = 1, . . . ,n, t = 1, . . . ,T, (1)
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where αi is the unobserved individual heterogeneity and xit is the vector of re-

gressors which are strictly exogenous to the idiosyncratic errors uit . In this paper

our main concern is that both xit and yit are unobserved for some i and t, which

is in counter to the case considered by conventional sample-selection studies in

which xit is completely observed and only yit is possibly missing.

Let ait be the indicator of being observed, i.e., ait = 1 if and only if (yit ,xit)
is observed. In our experiments to follow, we assume that the initial (yi1,xi1) is

observed for all i, that is, ai1 ≡ 1, which means that the initial sample represent

the population.

Observations can be missing for t ≥ 2 in various manners. As briefly ex-

plained in the introduction, we consider two leading cases: the ‘general missing’

case and the ‘pure attrition’. In the ‘general missing’ case, units may leave and

re-enter the sample at any time, while in the pure attrition case, a dropout is per-

manent and a non-respondent never returns. (See Little and Rubin, 2002, and

Wooldridge, 2010, for related terms.)

For both types of missingness, the conventional estimators using the full un-

balanced panel or the maximal balanced subset can be inconsistent if missing is

endogenous in the sense that it is correlated with the regression error. For exam-

ple, the pooled ordinary least squares (POLS) estimator may be inconsistent if

ait is correlated with εit = (αi −Eαi)+uit conditional on xit because

β̂pols =
(

∑
n

i=1 ∑
T

t=1
aitx

′
itxit

)−1

∑
n

i=1 ∑
T

t=1
aitx

′
ityit

= β +
(

∑
n

i=1 ∑
T

t=1
aitx

′
itxit

)−1

∑
n

i=1 ∑
T

t=1
aitx

′
itεit ,

where xit contains a constant term for convenience. Also, the first-difference

(FD) estimator using the maximal balanced subset is inconsistent if the indicator

ai = ∏T
s=1 ais is correlated with the idiosyncratic error term conditional on ∆xit

because

β̂fd =
(

∑
n

i=1 ∑
T

t=1
ai∆x′it∆xit

)−1

∑
n

i=1 ∑
T

t=1
ai∆x′it∆yit

= β +
(

∑
n

i=1 ∑
T

t=1
ai∆x′it∆xit

)−1

∑
n

i=1 ∑
T

t=1
ai∆x′it∆uit ,

where xit contains only the time-varying regressors in this case. Statistical prop-

erties of other estimators such as the random-effects generalized least squares,

various population-averaged model estimators, and the within-group estimators

can be derived in a similar fashion. Readers are referred to Wooldridge (2010)

for detailed discussions.
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When standard estimators are inconsistent due to endogenous nonresponse,

if xit is completely observed and missingness is confined to only yit , then there

are available standard methods of correcting or reducing biases under some suit-

able distributional assumptions. For example, when ait is determined by some

observed exogenous variables and other unobservable factors, reseachers often

assume a probit specification for ait and correct estimator bias by including the

IMR’s (inverse Mills ratios) in the right-hand side of the main equation (see

Heckman, 1976, 1979, for cross-sectional models, Wooldridge, 1995, for panel

data models, and Han and Lee, 2017, for efficient estimation with panel data).

This strategy is, however, unavailable if xit is also incomplete, simply because

the probit regression of the selection equation (for ait ) requires xit to be com-

pletely observed. Sometimes only deterministic elements (such as age and period

dummies) of xit are used as regressors in the selection equation estimation, but

practical usefulness of this strategy is rather limited due to the weak explanatory

power of those determimistic factors. In the pure attrition case, an instrumen-

tal variable estimation has been mentioned by Wooldridge (2010) as a possible

solution, but according to the authors’ simulations to be reported later, the re-

sulting estimators are seriously inefficient especially if fixed effects are handled

by differencing.

An alternative strategy is to impute the missing exogenous variable values

using their lagged values. Once xit is made complete by imputation, bias can be

handled in a standard manner. As Wooldridge’s IV approach is one way of using

lagged variables for bias correction, so is the imputation method another way of

utilizing information contained in lagged variables for bias correction. As ex-

plained in the introduction, our main goal is to examine the statistical properties

of the bias correction using the imputed data (that is, BCI) in comparison to other

methods.

We now introduce in detail various estimators considered in the present study

that are available in case where both yit and xit are possibly missing altogether.

We especially consider strategies that can be applied to the pooled regression:

the correlated random-effects (CRE) regression, which corresponds to the pooled

regression with xit replaced with (xit , x̄i) in the balanced panel case, and the first-

difference (FD) regression. The popular within-group regression is not consid-

ered here because its bias correction is highly involved. For these three classes of

regression, we consider estimation without bias-correction using the full unbal-

anced panel data, estimation without bias-correction using the maximal balanced

panel data, the bias-corrected IV estimation, and the BCI (bias-correction after

imputation) estimation. Details follow below.
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Estimation using full data or a balanced subset without correction

Estimation using the full (unbalanced panel) data and estimation using the

maximal balanced panel data without bias correction are defined straightfor-

wardly.

IV estimation with bias correction for pure attrition without imputation

The IV approach implemented based on a brief remark by Wooldridge (2010)

is available only for pure attrition and is derived as follows. Under pure attrition,

xit is observed only if xit−1 is, and lagged explanatory variables are used for the

probit regression, based on which the IMR’s are calculated. (For the general

missing case, in contrast, lagged regressors may not be observed for some units

observed at t, and thus lagged explanatory variables may not be used as instru-

ments unless they are imputed. But if the missing xit are fully imputed, then IV

estimation is not required anyway.)

The way in which the correction terms are calculated is different for the

pooled regression and the FD regression. For the pooled regression, consider the

main equation

yit = α +xitβ + εit , εit = αi −Eαi +uit . (2)

Because xit is incomplete due to attrition, it cannot be used as regressor in the

selection equation, and one can consider using xit−1 as instruments for bias cor-

rection. Specifically, the selection equation to fit is specified as

ait = I(πt0 +xit−1πt1 + vit > 0), vit ∼ N(0,1), (3)

conditional on ait−1 = 1. Note that vit may or may not depend on xit condi-

tional on xit−1. The conditional normality of vit implies that E(vit |xit−1,ait =
1) = λ (πt0 + xit−1πt1), where λ (·) denotes the IMR, the ratio of the density of

the standard normal distribution to its cumulative probability. Under the further

assumption that εit = δtvit + eit , where eit is independent of xit−1 and vit , (2) and

(3) together imply that

E(yit |xit−1,ait = 1) = α +E(xit |xit−1,ait = 1)β +δtλit , (4)

where λit = λ (πt0 +xit−1πt1). Thus, β can be estimated using the IV regression

of yit on xit and the interaction of the period dummies and the estimated IMR’s,

using xit−1 and the interaction terms as instruments, for the observations with

ait = 1. Note that this IV estimator is consistent if the condition in (4) is valid,
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which naturally requires that there are no fixed effects (correlated with xit ) and

that εit = δtvit + eit and eit is independent of xit−1 among others.

Bias correction by IV explained so far does not readily extend to the CRE

estimation where x̄i (or xi1, . . . ,xiT ) is included as extra controls for fixed ef-

fects, unless good instruments are found for x̄i. On the other hand, the FD

estimation eliminates the fixed effects, and bias correction is available under

some (strong) assumptions. One such method is discussed in Wooldridge (2010)

as follows. The main equation is differenced into ∆yit = ∆xitβ +∆uit in order

to eliminate the fixed effects, and the selection equation is again specified as

ait = I(πt0 + xit−1πt1 + vit > 0), where vit is distributed as N(0,1) conditional

on the event that ait−1 = 1 (and conditional on the exogenous variables). Im-

portantly, ∆uit and vit are assumed to have the relationship ∆uit = δtvit + eit this

time, where eit is independent of vit and xit−1. Then, in a similar fashion as in the

pooled regression, one can construct the IMR’s for each t. The differenced main

equation is accordingly augmented with the IMR’s and the β parameter can be

estimated by the IV regression using xit−1 and the inverse Mills ratios as instru-

ment. If xit does not affect attrition conditional on xit−1, then least squares can be

used in the final step regression (of the equation augmented with the IMR’s) in-

stead of the IV estimation as Wooldridge (2010) notes; otherwise, IV regression

is required.

It is important to note that vit should be serially independent for the consis-

tency of the resulting bias-corrected IV estimator, because otherwise the condi-

tion that vit ∼ N(0,1) conditional on ait−1 = 1 is likely to be violated. Also, the

condition that ∆uit = δtvit + eit is a strong requirement. If uit = δ 0
t vit + e0

it for

some independent e0
it instead, then we have ∆uit = δ 0

t vit −δ 0
t−1vit−1 + e0

it − e0
it−1,

which is hardly reduced to δtvit + eit for some δt with E(eit |xit−1,ait = 1) = 0

and eit independent of vit at the same time. For example, if δ 0
t ≡ δ 0 6= 0,

ait = ait−1I(πt0 +xitπt1 + vit > 0), and all of xit , vit and eit are independent mu-

tually and across all t, then δt = δ 0 and eit = e0
it −e0

it−1 −δ 0vit−1 (in order for vit

and eit to be mutually independent) so that

E(eit |xit−1,ait = 1) =−δ 0 E(vit−1|xit−1,ait = 1)

=−δ 0 E(vit−1|xit−1,ait−1 = 1,πt0 +xitπt1 + vit > 0)

=−δ 0 E(vit−1|xit−1,ait−1 = 1) 6= 0

in the pure attrition case.
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Bias correction after data imputation (BCI)

The main subject of investigation in the present paper is bias correction after

the imputation of xit (BCI). There are many sophisticated data imputation meth-

ods, and in this paper we consider a simple sequential substitution starting from

t = 2. For t = 2, xi2 is regressed on xi1 by OLS using the units with ai2 = 1

(note that ai1 ≡ 1 so xi1 is complete). Then the missing xi2 are replaced with the

predicted values x̂i2 = γ̂20 + xi1γ̂21, where γ̂2 j are the OLS estimates. For t = 3,

xi3 is regressed on xi2 using the observations with ai2 = ai3 = 1, and then the

missing xi3 values are replaced with x̂i3 = γ̂30 +[ai2xi2 +(1−ai2)x̂i2]γ̂31, where

γ̂30 and γ̂31 are the OLS estimates. Note that the regressions for imputation are

run only using the observed values, and the actual imputation is conducted us-

ing the observed values if available and the imputed values otherwise. It is also

possible that xi3 is regressed on xi2 and xi1 using only the observed values or

also using the imputed values, but pursuing the details is not the purpose of the

present study. Interested readers are referred to Little and Rubin (2002). Other

t’s are treated similarly.

After xit is made complete by imputation, we apply the standard bias cor-

rection procedures for the pooled regression, the CRE regression, and the FD

regression. The specifics are different for the general missing case and the pure

attrition case.

(i) The general missing case: For the pooled regression in the general miss-

ing case, the IMR’s are obtained for each t by the probit regression of ait on the

imputed explanatory variables. Then yit is regressed (using the observed units)

on xit and the IMR’s interacted with the period dummies, the latter of which are

introduced in order to account for the sample-selection bias. Extension to the

CRE regression is straightforwardly done by replacing xit with (xit , x̄i). Cor-

rection for the FD regression can be done under general conditions about serial

correlation in vit (the selection equation error) and the relationship between uit

and vit . To explain how, let xi = (xi1, . . . ,xiT ). From ∆yit =∆xitβ +∆uit , we have

E(∆yit |xi,aitait−1 = 1) = ∆xitβ +E(∆uit |xi,aitait−1 = 1),

E(∆uit |xi,aitait−1 = 1) = δt E(vit |xi,ait ait−1 = 1)

−δt−1 E(vit−1|xi,aitait−1 = 1),

where the second line is derived under the assumption that uit = δtvit + eit and

that (ei1, . . . ,eiT ) is independent of all xit and vit . Then, under the assumption that

vit and vit−1 are jointly normal (with unit variances and correlation ρvt ) and ait =
I(zit + vit > 0), where zit is a deterministic function of xi (e.g., zit = πt0 +xitπt1),
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we have

E(vit |xi,ait ait−1 = 1) = ψ(zit ,zit−1;ρvt),

E(vit−1|xi,ait ait−1 = 1) = ψ(zit−1,zit ;ρvt),

where

ψ(a,b;ρ) =
φ(a)Φ(b∗)

Φ2(a,b, ;ρ)
+ρ

φ(b)Φ(a∗)

Φ2(a,b;ρ)
,

a∗ = (a−ρb)(1−ρ2)−1/2, b∗ = (b−ρa)(1−ρ2)−1/2, and Φ2(a,b;ρ) is the cu-

mulative distribution function of the bivariate standard normal distribution with

correlation ρ (see Rosenbaum, 1961, Maddala, 1983, and Han and Lee, 2017).

To estimate zit , one can run the probit regression of ait on a set of variables,

which often contain xi and other exogenous variables (all of which should be

observed or imputed), at every t. The estimation of ρvt is more challenging. A

practically useful method is to construct the likelihood function for (ait−1,ait)
jointly as a function of ρvt for every t = 2, . . . ,T after zit and zit−1 are con-

structed as the fitted indices from individual probit regressions. Specifically,

letting p
jk
it = Pr(ait−1 = j,ait = k|zit ,zit−1;ρvt), we have p11

it = Φ2(zit−1,zit ;ρvt),
p10

it = Φ(zit−1)− p11
it , p01

it = Φ(zit)− p11
it and p00

it = 1− p11
it − p10

it − p01
it . From

this, the log-likelihood function

lnLt(ρvt) = ∑
n

i=1

[

I(ait−1 = 1,ait = 1) ln p11
it + I(ait−1 = 1,ait = 0) ln p10

it

+I(ait−1 = 0,ait = 1) ln p01
it + I(ait−1 = 0,ait = 0) ln p00

it

]

is constructed as a function of ρvt given zit and zit−1. For each t, ρvt is esti-

mated by maximizing lnLt(ρvt). Note that lnLt(ρ) is singular at ρ = ±1, and

the inverse hyperbolic tangent (arctanh) transformation of ρ to 1
2

ln(1+ρ
1−ρ ) is use-

ful (Fisher, 1915, 1921). Alternatively, bivariate probit regression can be run for

each pair of t −1 and t, but numerical optimization often fails.

Once all zit and ρvt are estimated as explained above, the bias-correction

terms ψ(zit ,zit−1;ρvt) and ψ(zit−1,zit ;ρvt) can be estimated in a straightforward

fashion. Finally, one can estimate β by pooling the differenced equations aug-

mented with the bias-correction terms. One method of pooling is to regress









ai1ai2∆yi2

ai2ai3∆yi3

. . .
aiT−1aiT ∆yiT









on











ai1ai2(∆xi2 λ̂i,2 0 · · · 0)
ai2ai3(∆xi3 −ψ̂i,23 ψ̂i,32 · · · 0)

...
...

...
...

aiT−1aiT (∆xiT 0 0 · · · ψ̂i,T,T−1)











(5)
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using the pooled OLS (Han and Lee, 2017). Note the IMR λ̂i,2 in (5), which

appears because ai1 ≡ 1. Importantly, pooling as in (5) requires that uit = δtvit +
eit , where vis and eit are independent. This condition is not always satisfied. It

is violated if, for example, ∆uit = δtvit + eit , which is assumed by the IV bias

correction of the FD regression. In order to encompass ∆uit = δtvit + eit as a

special case, we change the right-hand side of (5) to











ai1ai2(∆xi2 λ̂i,2 0 0 · · · 0 0)
ai2ai3(∆xi3 0 ψ̂i,23 ψ̂i,32 · · · 0 0)

...
...

...
...

...
...

aiT−1aiT (∆xiT 0 0 0 · · · ψ̂i,T−1,T ψ̂i,T,T−1)











, (6)

where the multiplication of ψ̂i,t−1,t by −1 is not required because the −1 factor

is handled by the regression.

(ii) The pure attrition case: Caution is needed for the pure attrition case,

where the non-respondents never return. In contrast to the general missing case

where a unit is observed whenever it selects to enter the sample, in the pure

attrition case ait is always zero if ait−1 = 0. To analyze this case, we assume that

ait = ait−1I(zit + vit > 0), where vit ∼ N(0,1) conditional on zit and ait−1 = 1, so

a probit model is specified conditional on the event that a unit is observed in the

previous period, in contrast to the general missing case where the probit model

is specified unconditionally.

When xit is fully observed, bias correction is possible for pure attrition as

follows. Consider, first, the pooled regression. For the model yit = α +xitβ +εit ,

ait = ait−1I(zit + vit > 0) and εit = δtvit + eit , we have

E(yit |xi,ait = 1) = α +xitβ +δt E(vit |xi,ait = 1),

where E(vit |xi,ait = 1) = λ (zit) as before. For the estimation of zit , one can fit a

probit model, not using all the observations but using only the units with ait−1 =
1. All the remaining procedure is identical to the general missing case. The

final step is augmenting the equation with the IMR’s and interaction with period

dummies, pooling the data for ait = 1 and then running the OLS regression.

Extension to the CRE regression is naturally done by replacing xit with (xit , x̄i).

Bias correction of the FD estimation for the pure attrition is more challenging

because the procedure involves the estimation of (pairwise) serial correlation in

vit . Obviously, estimation of a serial correlation coefficient requires a pair of

variables, not just one. In the general missing case, ait and xit are fully observed,

where xit is imputed if missing. In the pure attrition case, in contrast, (1,1),



GOEUN LEE AND CHIROK HAN 11

(1,0) and (0,0) are observed for (ait−1,ait) but (0,1) is never. In addition, if

ait−2 = 0, then ait−1 and ait are automatically zero, and thus (0,0) delivers no

useful information about the true possible (ait−1,ait) values in case ait−2 = 0.

This is a nuisance problem, which we overcome by conditioning on the event

that ait−2 = 1.

Conditional on ait−2 = 1, there are three possible sets of values for (ait−1,ait):
(1,1), (1,0) and (0,0); the excluded one (0,1) is subsumed in (0,0). Given the

zit and zit−1 values, a likelihood for ρvt can be constructed as follows:

lnLt(ρvt) = ∑
n

i=1
ait−2

[

I(ait−1 = 1,ait = 1) ln p11
it (7)

+ I(ait−1 = 1,ait = 0) ln p10
it

+ I(ait−1 = 0) ln(1− p11
it − p10

it )

]

,

where ait−2 is multiplied in order to condition on the event that ait−2 = 1, and

which can be maximized to estimate ρvt . Now, with zit ,zit−1 and ρvt estimated

as explained so far, the correction terms ψ(zit−1,zit ;ρvt) and ψ(zit ,zit−1;ρvt) are

obtained for the observed units (ait = 1), and the pooled regression (5), or more

preferably its modification to (6) can be conducted to estimate β . When xit

is incomplete as well as yit , these procedures are make possible because xit is

imputed.

Summary on estimators

To summarize, we consider the following estimators for both the general

missing case and the pure attrition case. (A1) The POLS estimator using the

full unbalanced panel data is obtained by regressing yit on xit using the observed

units. (A2) The CRE estimator using the full unbalanced panel data is obtained

by regressing yit on xit and x̄i using the observed units, where x̄i is introduced in

order to control for correlated individual effects. (A3) The FD estimator using

the full unbalanced panel data is obtained by regressing ∆yit on ∆xit using all

possible observations. (A4) The POLS estimator using the maximal balanced

panel data is obtained by regressing yit on xit using the units observed for all

t. (A5) The CRE estimator using the maximal balanced panel data is obtained

by regressing yit on xit and x̄i using the units observed for all t. (A6) The FD

estimator using the maximal balanced panel data is obtained by regressing ∆yit

on ∆xit using the units observed for all t. These estimators do not correct the

bias due to nonresponse.
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For the general missing case, we consider the following BCI methods, to-

gether with the A1–A6 estimators. (B1) For the pooled regression with correc-

tion, the missing xit are imputed, and the bias-correction procedure is applied

to the pooled equation. That is, the IMR’s are obtained from the probit regres-

sion of ait on xit (imputed) using the observations with ait−1 = 1, and then the

main pooled equation is augmented with the IMR’s interacted with the period

dummies. This estimation does not involve the estimation of the serial corre-

lation coefficients in the selection equation error vit . (B2) The B1 procedure is

modified to CRE by substituting (xit , x̄i) for every occurrance of xit . (B3) The

FD estimation with bias correction after imputation for the general missing case

is obtained by using the ‘ψ’ correction terms in place of the IMR’s and then

pooling the data as in the regression of (5), preferably with modification to (6).

For the pure attrition case, A1–A6 are again considered, and B1–B3 are mod-

ified so that all the probit regressions are conducted conditional on ait−1 = 1, and

the ρvt parameters in B3 are estimated conditional on ait−2 = 1 by maximizing

(7). Let us name the resulting procedures B4, B5 and B6, respectively. The IV

bias correction is also available in this case as follows. (C1) For the pooled re-

gression, the IMR’s are calculated for each t by the probit regression of ait on

xit−1 using the units with ait−1 = 1. The interaction terms of these IMR’s and

the period dummies are added to the right-hand side of the main equation and

then a pooled IV regression is conducted using xit−1 and the interaction terms as

instruments. (C2) For the FD regression, the bias-correction terms are obtained

using the same method as in C1, but this time, they are added to the right-hand

side of the FD equation rather than of the pooled levels equation.

3. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we compare the alternative estimators introduced in Section 2

using Monte Carlo simulation. Comparison is made for both the general missing

case and the pure attrition case. The main focus is put on the performance of the

bias-correction methods after imputing xit . In what follows, the notation eit ∼
AR1(ρ) means that ei1 ∼ iid N(0,1) and eit = ρeit−1+(1−ρ2)1/2e0

it , t = 2, . . . ,T ,

where (ei1,e
0
i2, . . . ,e

0
iT ) ∼ iid N(0, IT ) so that eit is stationary AR(1) with serial

correlation equal to ρ over t and iid across i.
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Table 1: Average survival rate (general missing case, %)

t T = 2 T = 5 T = 10

1 100.00 100.00 100.00

2 79.28 79.23 79.32

3 79.25 79.33

4 79.25 79.32

5 79.31 79.32

6 79.34

7 79.34

8 79.35

9 79.36

10 79.34

Note. Data are generated by (8). Survival rate for each year is computed as a ratio to the first year.

The average rates are obtained from 2,000 replications.

3.1. THE GENERAL MISSING CASE

For the general missing case, data are generated as follows:

xit = ξ 0
i + x0

it , ξ 0
i ∼ N(0,1), x0

it ∼ AR1(0.75), (8a)

vit = (σ 2
η +1)−1/2(ση ηi + v0

it), (8b)

ση = 1, ηi ∼ N(0,1), v0
it ∼ AR1(0.65),

ait = I(1+0.5xit + vit > 0), t ≥ 2, ai1 ≡ 1, (8c)

uit = δtvit + eit , t ≥ 2, ui1 ≡ e0
i1, (e0

i1,ei2, . . . ,eiT )∼ iid N(0, IT ), (8d)

yit = αi +βxit +uit , β = 1, αi ∼ iid N(0,1)+θα x̄i, (8e)

where αi, ξ 0
i , x0

it , ηi, v0
it , and (e0

i1,ei2, . . . ,eiT ) are mutually independent and

x̄i =
1
T ∑T

t=1 xit . Data (yit ,xit) are observed if ait = 1 in (8c), where vit is seri-

ally dependent due to (8b). Missing is endogenous if δt 6= 0 in (8d), where δt

measures the degree of endogeneity. The αi term in (8e) is random effects if

θα = 0 and fixed effects if θα 6= 0.

The average survival rates are summarized in Table 1 when data are gener-

ated by (8). Every year, approximately 80% of the units in the initial sample are

observed, and approximately 20% drop out of the sample.



14 BIAS REDUCTION BY IMPUTATION

Table 2: The general missing case with random effects (θα = 0)

δt = 0.25 δt = 0.75

Not corrected Corrected Not corrected Corrected

T Name Full Balanced Imputation Full Balanced Imputation

0.0131 0.0189 -0.0009 0.0407 0.0588 -0.0019

POLS (0.0284) (0.0321) (0.0316) (0.0292) (0.0331) (0.0317)

[0.0312] [0.0373] [0.0316] [0.0501] [0.0675] [0.0318]

0.0141 0.0141 0.0014 0.0390 0.0390 -0.0003

2 CRE (0.0719) (0.0719) (0.0743) (0.0797) (0.0797) (0.0802)

[0.0733] [0.0733] [0.0743] [0.0887] [0.0887] [0.0802]

0.0141 0.0141 0.0043 0.0390 0.0390 0.0097

FD (0.0719) (0.0719) (0.0723) (0.0797) (0.0797) (0.0788)

[0.0733] [0.0733] [0.0724] [0.0887] [0.0887] [0.0794]

0.0267 0.0340 -0.0011 0.0820 0.1046 -0.0021

POLS (0.0252) (0.0309) (0.0317) (0.0273) (0.0335) (0.0328)

[0.0367] [0.0460] [0.0317] [0.0865] [0.1098] [0.0329]

0.0150 0.0100 -0.0100 0.0450 0.0290 -0.0307

5 CRE (0.0283) (0.0318) (0.0358) (0.0304) (0.0346) (0.0379)

[0.0320] [0.0333] [0.0371] [0.0543] [0.0451] [0.0487]

0.0126 0.0102 0.0025 0.0349 0.0278 0.0062

FD (0.0380) (0.0412) (0.0581) (0.0398) (0.0431) (0.0613)

[0.0400] [0.0424] [0.0581] [0.0529] [0.0513] [0.0616]

0.0337 0.0403 0.0044 0.1017 0.1210 0.0122

POLS (0.0227) (0.0306) (0.0310) (0.0246) (0.0331) (0.0338)

[0.0407] [0.0507] [0.0313] [0.1047] [0.1254] [0.0359]

0.0190 0.0119 -0.0082 0.0567 0.0348 -0.0263

10 CRE (0.0160) (0.0197) (0.0280) (0.0178) (0.0224) (0.0312)

[0.0249] [0.0230] [0.0292] [0.0594] [0.0414] [0.0408]

0.0114 0.0077 0.0031 0.0332 0.0212 0.0049

FD (0.0261) (0.0307) (0.0509) (0.0272) (0.0324) (0.0538)

[0.0284] [0.0317] [0.0510] [0.0429] [0.0387] [0.0540]

Note. Data are generated by (8) with θα = 0. The simulated bais, simulated standard deviation (in

parentheses), and root-mean-squared errors (in square brackets) are reported.
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Table 3: The general missing case with fixed effects (θα = 1)

δt = 0.25 δt = 0.75

Not corrected Corrected Not corrected Corrected

T Name Full Balanced Imputation Full Balanced Imputation

0.0141 0.0141 0.0059 0.0390 0.0390 0.0043

CRE (0.0719) (0.0719) (0.0743) (0.0797) (0.0797) (0.0803)

2
[0.0733] [0.0733] [0.0745] [0.0887] [0.0887] [0.0804]

0.0141 0.0141 0.0043 0.0390 0.0390 0.0097

FD (0.0719) (0.0719) (0.0723) (0.0797) (0.0797) (0.0788)

[0.0733] [0.0733] [0.0724] [0.0887] [0.0887] [0.0794]

0.0150 0.0100 -0.0020 0.0450 0.0290 -0.0227

CRE (0.0283) (0.0318) (0.0359) (0.0304) (0.0346) (0.0380)

5
[0.0320] [0.0333] [0.0359] [0.0543] [0.0451] [0.0442]

0.0126 0.0102 0.0025 0.0349 0.0278 0.0062

FD (0.0380) (0.0412) (0.0581) (0.0398) (0.0431) (0.0613)

[0.0400] [0.0424] [0.0581] [0.0529] [0.0513] [0.0616]

0.0190 0.0119 -0.0090 0.0567 0.0348 -0.0272

CRE (0.0160) (0.0197) (0.0282) (0.0178) (0.0224) (0.0313)

10
[0.0249] [0.0230] [0.0296] [0.0594] [0.0414] [0.0414]

0.0114 0.0077 0.0031 0.0332 0.0212 0.0049

FD (0.0261) (0.0307) (0.0509) (0.0272) (0.0324) (0.0538)

[0.0284] [0.0317] [0.0510] [0.0429] [0.0387] [0.0540]

Note. Data are generated by (8) with θα = 1. The simulated bais, simulated standard deviation (in

parentheses), and root-mean-squared errors (in square brackets) are reported.
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Table 2 presents the simulated biases, the standard deviations, and the root

mean squared errors of various estimators for θα = 0 (random effects) with δt =
0.25 and δt = 0.75, for n = 1,000 and for T = 2,5,10, obtained from 2,000

replications. The considered estimators are A1–A3 (the POLS, CRE and FD

estimators using the full sample), A4–A6 (those using the maximal balanced

subset), and B1–B3 (bias correction after imputation). When θα = 0, the POLS,

CRE and FD estimators are all consistent if there are no missing observations or

if missing is not endogenous.

In Table 2, when the degree of endogeneity is small (δt = 0.25), the conven-

tional uncorrected estimators using the full sample (“Full”) or using the maximal

balanced subset (“Balanced”) are only slightly biased, and BCI performs well.

Under more severe endogeneity (δt = 0.75), the uncorrected estimators are more

seriously biased, and again the BCI estimators handle most of the biases except

for CRE. It is notable that the CRE estimators (with or without bias correction)

do not perform well except for T = 2. This poor performance is somewhat un-

expected, and we have done vast extra simulations (unreported). It seems that

the performance of the corrected estimators heavily depends on how well the

missing values of xit are imputed, naturally, and the inclusion of x̄i is especially

harmful.

Table 3 reports the results when the individual effects are fixed effects (θα =
1). In the presence of fixed effects, the POLS estimator is inconsistent anyway,

and we do not report the results for it. The CRE estimator is close to the within-

group estimator (they are the same if the panel data is balanced), and the reported

biases of the uncorrected CRE estimator are due to the endogenous missing.

The performance of the imputation estimator for CRE is arguable but its bias is

notable for larger T values. Combination of BCI and CRE is not recommended.

BCI performs quite well for the FD estimator, on the other hand.

Simulation results for the general missing case suggest that BCI can be use-

ful when applied to the FD estimation. Most of the bias of the uncorrected

estimators is corrected by the BCI procedure. It is again naturally true that the

performance of the corrected estimator depends on the accuracy of the data im-

putation according to the unreported vast simulations.

3.2. THE PURE ATTRITION CASE

The data generating process for the pure attrition case is modified from Sec-

tion 3.1 in that ait = ait−1I(1+0.5xit + vit > 0) instead of (8c). Everything else

is identical to the corresponding elements of (8). We reiterate the full data gen-
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Table 4: Average survival rate (pure attrition case, %)

T = 2 T = 5 T = 10

t First Last First Last First Last

1 100.00 100.00 100.00 100.00 100.00 100.00

2 79.28 79.28 79.23 79.23 79.32 79.32

3 72.78 91.85 72.89 91.90

4 67.97 93.40 68.09 93.41

5 64.05 94.22 64.13 94.19

6 60.76 94.74

7 57.80 95.14

8 55.20 95.49

9 52.85 95.75

10 50.73 95.99

Note. Data are generated by (9). “First” and “Last” indicate the survival rates (from 2,000 repli-

cations) in comparison to the period 1 and the previous period, respectively.

erating processes for future reference as follows:

xit = ξ 0
i + x0

it , ξ 0
i ∼ N(0,1), x0

it ∼ AR1(0.75), (9a)

vit = (σ 2
η +1)−1/2(ση ηi + v0

it), (9b)

ση = 1, ηi ∼ N(0,1), v0
it ∼ AR1(0.65),

ait = ait−1I(1+0.5xit + vit > 0), t ≥ 2, ai1 ≡ 1, (9c)

uit = δtvit + eit , t ≥ 2, ui1 ≡ e0
i1, (e0

i1,ei2, . . . ,eiT )∼ iid N(0, IT ), (9d)

yit = αi +βxit +uit , β = 1, αi ∼ iid N(0,1)+θα x̄i, (9e)

where αi, ξ 0
i , x0

it , ηi, v0
it , and (e0

i1,ei2, . . . ,eiT ) are mutually independent and x̄i =
1
T ∑T

t=1 xit .

When data are generated according to (9), Table 4 summarizes the simulated

average survival rates. The dropout rate is approximately 80% in period 2 and

less than 10% in very subsequent years in comparison to the previous year. After

10 waves, approximately a half of the initial units remain in the sample.

The estimators in this section include the conventional estimators using the

full sample (A1–A3) and those using the maximal balanced subset (A4–A6), the
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bias-corrected estimators using data imputation (B4–B6), and two IV estimators

C1–C2 (for the pooled regression and FD, respectively).

Tables 5 and 6 report the results for θα = 0 (random effects), for δt = 0.25

and δt = 0.75, respectively. The biases of the conventional estimators using the

full sample (“Full”) are similar to the results in Table 2 (identical for T = 2).

The results for the conventional estimators using the maximal balanced subset

(“Balanced”) are identical to the corresponding part in Table 2. With δt = 0.25 in

Table 5, bias due to attrition is limited, but the biases of the imputation estimator

(BCI) are remarkably small (except for CRE). Table 6 presents the results for

the case with a higher degree of endogeneity (δt = 0.75), where the conventional

uncorrected estimators suffer from larger biases. Notably the IV bias correction

is invalid for T > 2 because the way uit is generated in (9d) does not allow for the

proper ∆uit = δtvit + eit , which is crucial for the IV bias correction. As a result,

the IV correction estimators are more or less biased. Among the estimators the

BCI (imputation) estimators show least biases except for CRE. The preformance

of BCI is especially remarkable for FD.

Tables 7 and 8 report the results with fixed effects (θα = 1). Again, due to

the fixed effects, the POLS estimator is biased regardless of attrition, so we do

not report the results for POLS. The CRE estimators do not work well regardless

of bias correction but the bias-corrected FD estimators (with imputation) show

remarkable performance in terms of bias correction. Again, the IV correction

estimator is supposed to be biased due to the way ∆uit and vit are related each

other.

As explained in Section 2, the assumption that ∆uit = δtvit + eit is not satis-

fied when uit = δtvit + eit , and thus the IV correction estimators are inconsistent.

In the rest of this section, we modify the data generating process so that the

corrected IV estimators are consistent. Specifically, we conduct another set of

experiments where uit are generated by ∆uit = δtvit + eit instead of (9d). For fu-

ture reference, again, we fully describe the considered data generating processes:

xit = ξ 0
i + x0

it , ξ 0
i ∼ N(0,1), x0

it ∼ AR1(0.75), (10a)

vit = (σ 2
η +1)−1/2(ση ηi + v0

it), (10b)

ση = 0, ηi ∼ N(0,1), v0
it ∼ AR1(0),

ait = ait−1I(1+0.5xit + vit > 0), t ≥ 2, ai1 ≡ 1, (10c)

uit = uit−1 +δtvit + eit , t ≥ 2, (10d)

ui1 ≡ e0
i1, (e0

i1,ei2, . . . ,eiT )∼ iid N(0, IT ),

yit = αi +βxit +uit , β = 1, αi ∼ iid N(0,1)+θα x̄i, (10e)
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Table 5: The pure attrition case with random effects (θα = 0, δt = 0.25)

Not corrected Corrected

T Name Full Balanced IV Imputation

0.0131 0.0189 -0.0010 -0.0009

POLS (0.0284) (0.0321) (0.0487) (0.0316)

[0.0312] [0.0373] [0.0487] [0.0316]

0.0141 0.0141 0.0014

2 CRE (0.0719) (0.0719) – (0.0743)

[0.0733] [0.0733] [0.0743]

0.0141 0.0141 0.0049 0.0043

FD (0.0719) (0.0719) (0.3326) (0.0723)

[0.0733] [0.0733] [0.3326] [0.0724]

0.0252 0.0340 0.0093 0.0011

POLS (0.0260) (0.0309) (0.0352) (0.0314)

[0.0362] [0.0460] [0.0364] [0.0314]

0.0112 0.0100 -0.0168

5 CRE (0.0305) (0.0318) – (0.0384)

[0.0325] [0.0333] [0.0419]

0.0118 0.0102 0.0068 0.0023

FD (0.0390) (0.0412) (0.0977) (0.0613)

[0.0407] [0.0424] [0.0979] [0.0613]

0.0316 0.0403 0.0080 0.0070

POLS (0.0247) (0.0306) (0.0315) (0.0323)

[0.0401] [0.0507] [0.0325] [0.0330]

0.0132 0.0119 -0.0174

10 CRE (0.0181) (0.0197) – (0.0319)

[0.0224] [0.0230] [0.0364]

0.0096 0.0077 0.0062 0.0043

FD (0.0281) (0.0307) (0.0541) (0.0512)

[0.0297] [0.0317] [0.0545] [0.0514]

Note. Data are generated by (9) with θα = 0 and δt = 0.25. The simulated bais, simulated standard

deviation (in parentheses), and root-mean-squared errors (in square brackets) are reported.
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Table 6: The pure attrition case with random effects (θα = 0, δt = 0.75)

Not corrected Corrected

T Name Full Balanced IV Imputation

0.0407 0.0588 -0.0010 -0.0019

POLS (0.0292) (0.0331) (0.0487) (0.0317)

[0.0501] [0.0675] [0.0487] [0.0318]

0.0390 0.0390 -0.0003

2 CRE (0.0797) (0.0797) – (0.0802)

[0.0887] [0.0887] [0.0802]

0.0390 0.0390 -0.0004 0.0097

FD (0.0797) (0.0797) (0.3672) (0.0788)

[0.0887] [0.0887] [0.3671] [0.0794]

0.0779 0.1046 0.0310 0.0049

POLS (0.0283) (0.0335) (0.0389) (0.0330)

[0.0828] [0.1098] [0.0497] [0.0334]

0.0328 0.0290 -0.0521

5 CRE (0.0330) (0.0346) – (0.0409)

[0.0465] [0.0451] [0.0663]

0.0330 0.0278 0.0189 0.0060

FD (0.0408) (0.0431) (0.1065) (0.0649)

[0.0525] [0.0513] [0.1081] [0.0652]

0.0950 0.1210 0.0233 0.0196

POLS (0.0267) (0.0331) (0.0357) (0.0357)

[0.0987] [0.1254] [0.0426] [0.0407]

0.0391 0.0348 -0.0543

10 CRE (0.0206) (0.0224) – (0.0356)

[0.0442] [0.0414] [0.0649]

0.0277 0.0212 0.0154 0.0081

FD (0.0295) (0.0324) (0.0587) (0.0540)

[0.0405] [0.0387] [0.0606] [0.0546]

Note. Data are generated by (9) with θα = 0 and δt = 0.75. The simulated bais, simulated standard

deviation (in parentheses), and root-mean-squared errors (in square brackets) are reported.
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Table 7: The pure attrition case with fixed effects (θα = 1, δt = 0.25)

Not corrected Corrected

T Name Full Balanced IV Imputation

0.0141 0.0141 0.0059

CRE (0.0719) (0.0719) – (0.0743)

2
[0.0733] [0.0733] [0.0745]

0.0141 0.0141 0.0049 0.0043

FD (0.0719) (0.0719) (0.3326) (0.0723)

[0.0733] [0.0733] [0.3326] [0.0724]

0.0112 0.0100 0.0078

CRE (0.0305) (0.0318) – (0.0387)

5
[0.0325] [0.0333] [0.0395]

0.0118 0.0102 0.0068 0.0023

FD (0.0390) (0.0412) (0.0977) (0.0613)

[0.0407] [0.0424] [0.0979] [0.0613]

0.0132 0.0119 0.0210

CRE (0.0181) (0.0197) – (0.0325)

10
[0.0224] [0.0230] [0.0387]

0.0096 0.0077 0.0062 0.0043

FD (0.0281) (0.0307) (0.0541) (0.0512)

[0.0297] [0.0317] [0.0545] [0.0514]

Note. Data are generated by (9) with θα = 1 and δt = 0.25. The simulated bais, simulated standard

deviation (in parentheses), and root-mean-squared errors (in square brackets) are reported.
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Table 8: The pure attrition case with fixed effects (θα = 1, δt = 0.75)

Not corrected Corrected

T Name Full Balanced IV Imputation

0.0390 0.0390 0.0043

CRE (0.0797) (0.0797) – (0.0803)

2
[0.0887] [0.0887] [0.0804]

0.0390 0.0390 -0.0004 0.0097

FD (0.0797) (0.0797) (0.3672) (0.0788)

[0.0887] [0.0887] [0.3671] [0.0794]

0.0328 0.0290 -0.0276

CRE (0.0330) (0.0346) – (0.0409)

5
[0.0465] [0.0451] [0.0494]

0.0330 0.0278 0.0189 0.0060

FD (0.0408) (0.0431) (0.1065) (0.0649)

[0.0525] [0.0513] [0.1081] [0.0652]

0.0391 0.0348 -0.0160

CRE (0.0206) (0.0224) – (0.0353)

10
[0.0442] [0.0414] [0.0388]

0.0277 0.0212 0.0154 0.0081

FD (0.0295) (0.0324) (0.0587) (0.0540)

[0.0405] [0.0387] [0.0606] [0.0546]

Note. Data are generated by (9) with θα = 1 and δt = 0.75. The simulated bais, simulated standard

deviation (in parentheses), and root-mean-squared errors (in square brackets) are reported.
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where αi, ξ 0
i , x0

it , ηi, v0
it , and (e0

i1,ei2, . . . ,eiT ) are mutually independent and x̄i =
1
T ∑T

t=1 xit . Above, (10d) is modified from (9d), and (10b) is also revised so that

vit is serially independent. For data generated by (10), the bias-corrected IV

estimators are consistent, so is the BCI estimator when the differenced equations

are pooled by the more flexible (6) instead of (5).

Table 9 presents the results for data generated by (10) with θα = 1 (fixed

effects). Both the bias-corrected IV estimator and the BCI estimator show little

bias (except for CRE), and the BCI estimator is substantially more efficient than

the IV estimator. As for the FD estimators, Wooldridge’s IV estimation works

well.

4. CONCLUSION

This study considers the method of correcting bias after imputing miss-

ing exogenous variables (BCI) for panel data models with missing observations

and attrition, together with conventional estimators without correction, and the

instrumental-variable (IV) bias-correction estimators. When no variables are

observed for the non-respondents, Monte Carlo experments suggest that bias-

correction after imputation can be useful when combined with the FD regres-

sion. Bias-correction of the CRE estimator does not show desirable properties,

on the other hand. When both the IV bias-correction and the imputation bias-

correction show tiny biases, the imputation method seems utilize information in

a considerably more efficient way.

The results reported in this paper are based on Monte Carlo experiments,

and results may vary across data and the accuracy of imputation. But the results

look stable according to vast (unreported) simulations we have conducted. More

experments and possibly analytical studies are called for.
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Table 9: The pure attrition case with fixed effects under the new assumption

(θα = 1, δt = 0.75)

Not corrected Corrected

T Name Full Balanced IV Imputation

0.0380 0.0380 0.0032

CRE (0.0613) (0.0613) – (0.0602)

2
[0.0721] [0.0721] [0.0603]

0.0380 0.0380 0.0008 0.0090

FD (0.0613) (0.0613) (0.2866) (0.0601)

[0.0721] [0.0721] [0.2865] [0.0608]

0.0423 0.0258 -0.0875

CRE (0.0492) (0.0576) – (0.0553)

5
[0.0649] [0.0631] [0.1035]

0.0555 0.0432 -0.0020 0.0052

FD (0.0337) (0.0386) (0.1508) (0.0516)

[0.0650] [0.0579] [0.1508] [0.0518]

0.0628 0.0197 -0.1638

CRE (0.0549) (0.0783) – (0.0726)

10
[0.0834] [0.0807] [0.1792]

0.0603 0.0403 0.0022 -0.0010

FD (0.0263) (0.0358) (0.1088) (0.0467)

[0.0658] [0.0539] [0.1088] [0.0467]

Note. Data are generated by (10) with θα = 1 and δt = 0.75. The simulated bais, simulated stan-

dard deviation (in parentheses), and root-mean-squared errors (in square brackets) are reported.
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